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 2 

ABSTRACT 41 

The advent of large-scale single-cell chromatin accessibility profiling has accelerated our ability 42 

to map gene regulatory landscapes, but has outpaced the development of robust, scalable 43 

software to rapidly extract biological meaning from these data. Here we present a software suite 44 

for single-cell analysis of regulatory chromatin in R (ArchR; www.ArchRProject.com) that enables 45 

fast and comprehensive analysis of single-cell chromatin accessibility data. ArchR provides an 46 

intuitive, user-focused interface for complex single-cell analyses including doublet removal, 47 

single-cell clustering and cell type identification, robust peak set generation, cellular trajectory 48 

identification, DNA element to gene linkage, transcription factor footprinting, mRNA expression 49 

level prediction from chromatin accessibility, and multi-omic integration with scRNA-seq. Enabling 50 

the analysis of over 1.2 million single cells within 8 hours on a standard Unix laptop, ArchR is a 51 

comprehensive analytical suite for end-to-end analysis of single-cell chromatin accessibility data 52 

that will accelerate the understanding of gene regulation at the resolution of individual cells.  53 

 54 

INTRODUCTION 55 

Single-cell approaches have revolutionized our understanding of biology, opening the door for a 56 

wide array of applications ranging from interrogation of cellular heterogeneity to identification of 57 

disease-specific processes. The advent of single-cell approaches for the assay for transposase-58 

accessible chromatin using sequencing (scATAC-seq) has made it possible to study chromatin 59 

accessibility and gene regulation in single cells1,2. These chromatin-based assays have 60 

illuminated cell type-specific biology and provided insights into complex biological processes 61 

previously hidden by ensemble averaging3–7. Recent methodological advances have increased 62 

the throughput of scATAC-seq, enabling a single lab to generate data from hundreds of thousands 63 

of cells on the timescale of weeks5,6,8. These advances have been driven by an increased interest 64 

in chromatin-based gene regulation across a diversity of cellular contexts and biological 65 

systems1,2,5,6,8. This capacity for data generation has outpaced the development of intuitive, 66 
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robust, and comprehensive software for analysis of these scATAC-seq datasets9 – a crucial 67 

requirement that would facilitate the broad utilization of these methods of investigating gene 68 

regulation at cellular resolution.  69 

 To this end, we sought to develop a user-oriented software suite for both routine and 70 

advanced analysis of massive-scale single-cell chromatin accessibility data from diverse sources 71 

without the need for high-performance computing environments. This package for single-cell 72 

Analysis of Regulatory Chromatin in R (ArchR; www.ArchRProject.com) provides a facile platform 73 

to interrogate scATAC-seq data from multiple scATAC-seq implementations, including the 10x 74 

Genomics Chromium system6,7, the Bio-Rad droplet scATAC-seq system8, single-cell 75 

combinatorial indexing2,5, and the Fluidigm C1 system1,4 (Fig. 1a). ArchR provides a user-focused 76 

interface for complex scATAC-seq analysis such as marker feature identification, transcription 77 

factor (TF) footprinting, an interactive genome browsing, scRNA-seq integration, and cellular 78 

trajectory analysis (Fig. 1a). When compared to other existing tools, such as SnapATAC10 and 79 

Signac11, ArchR provides a more extensive set of features with substantially improved 80 

performance benchmarks (Supplementary Fig. 1a). Moreover, ArchR is designed to provide the 81 

speed and flexibility to support interactive analysis, enabling iterative extraction of meaningful 82 

biological interpretations. 83 

 84 

RESULTS 85 

 86 

The ArchR framework 87 

ArchR takes as input aligned BAM or fragment files, which are first parsed in small chunks per 88 

chromosome, read in parallel to conserve memory, then efficiently stored on disk using the 89 

compressed random-access hierarchical data format version 5 (HDF5) file format. These HDF5 90 

files form the constituent pieces of an ArchR analysis which we call “Arrow” files. Arrow files are 91 

grouped into an “ArchR Project”, a compressed R data file that is stored in memory, which 92 
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 4 

provides an organized, rapid, and low memory-use framework for manipulation of the larger arrow 93 

files stored on disk (Supplementary Fig. 1b). Arrow files are always accessed in chunks using 94 

parallel read and write operations that minimize memory while efficiently using the multi-processor 95 

capabilities of most standard computers (Supplementary Fig. 1c-d). Moreover, the base file size 96 

of Arrow files remains smaller than the input fragment files across various cellular inputs 97 

(Supplementary Fig. 2a-b). These efficiencies provide substantial improvements in speed and 98 

memory usage compared to scATAC-seq software packages such as SnapATAC and Signac. 99 

ArchR enables efficient and comprehensive single-cell chromatin accessibility analysis 100 

To benchmark the performance of ArchR, we collected three diverse publicly available datasets 101 

(Supplementary Table 1): (i) peripheral blood mononuclear cells (PBMCs) that represent 102 

discrete primary cell types6,7 (Supplementary Fig. 2c-e), (ii) bone marrow stem/progenitor cells 103 

and differentiated cells that represent a continuous cellular hierarchy7 (Supplementary Fig. 2f-104 

h), and (iii) a large atlas of murine cell types from diverse organ systems5 (Supplementary Fig. 105 

2i-k). Prior to downstream analysis, we performed rigorous quality control of each dataset to 106 

remove low quality cells. To assess per-cell data quality, ArchR computes TSS enrichment 107 

scores, which have become the standard for bulk ATAC-seq analysis 108 

(https://www.encodeproject.org/atac-seq/) and provide clearer separation of low- and high-quality 109 

cells compared to other metrics such as the fraction of reads in promoters10 (Supplementary Fig. 110 

2c,f). 111 

 To quantify the ability of ArchR to analyze large-scale data, we compared the performance 112 

of ArchR to that of SnapATAC and Signac for three of the major scATAC-seq analytical steps 113 

across these three datasets using two different computational infrastructures (Supplementary 114 

Fig 3a and Supplementary Table 2). We observed that ArchR outperforms SnapATAC and 115 

Signac in speed and memory usage across all comparisons, enabling analysis of 70,000 cell 116 

datasets in under and hour with 32 GB of RAM and 8 cores (Fig. 1b-c and Supplementary Fig. 117 

3b-i). Additionally, when analyzing a 70,000-cell dataset, SnapATAC exceeded the available 118 
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memory in the high memory setting (128 GB RAM, 20 cores) (Fig. 1c) and both SnapATAC and 119 

Signac exceeded the available memory in the low memory setting (32 GB RAM, 8 cores) 120 

(Supplementary Fig. 3c), while ArchR completed these analyses faster and without exceeding 121 

the available memory. Lastly, ArchR can analyze scATAC-seq data directly from BAM files, 122 

enabling the analysis of data from diverse single-cell platforms including the sci-ATAC-seq murine 123 

atlas5 (Supplementary Fig. 3j-k).  124 

 125 

ArchR identifies putative doublets in scATAC-seq data 126 

The presence of so called “doublets” – two cells that are captured within the same nano-reaction 127 

(i.e. a droplet) and thus indexed with the same cellular barcode – often complicate single-cell 128 

analysis. Doublets appear as a superposition of signals from both cells, leading to the false 129 

appearance of distinct clusters or false connections between distinct cell types. To mitigate this 130 

issue, we designed a doublet detection and removal algorithm as part of ArchR. Similar to 131 

methods employed for doublet detection in scRNA-seq12,13, ArchR identifies heterotypic doublets 132 

by bioinformatically generating a collection of synthetic doublets, projecting these synthetic 133 

doublets into the low-dimensional data embedding, then identifying the nearest neighbors to these 134 

synthetic doublets as doublets themselves12,13 (Fig. 1d-f). To validate this approach, we carried 135 

out scATAC-seq on a mixture of 10 highly distinct human cell lines (N = 38,072 cells), allowing 136 

for genotype-based identification of doublets via demuxlet14 as a ground-truth comparison for 137 

computational identification of doublets by ArchR (Fig. 1g and Supplementary Fig. 4a). Using 138 

an unbiased optimization for the projection of synthetic doublets, we identified robust parameters 139 

(Supplementary Fig. 4b) for doublet prediction (ROC = 0.918) which significantly outperformed 140 

doublet prediction based on the total number of accessible fragments (ROC = 0.641) (Fig. 1h 141 

and Supplementary Fig 4c-h). With these predicted doublets excluded, the remaining cells 142 

formed 10 large groups according to their cell line of origin (Fig. 1i). ArchR’s implementation of 143 
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heterotypic doublet elimination reduces false cluster identification and thus improves the fidelity 144 

of downstream results.  145 

 146 

ArchR provides high-resolution and efficient dimensionality reduction of scATAC-seq data 147 

ArchR additionally provides methodological improvements over other available software. One of 148 

the most fundamental aspects of ATAC-seq analysis is the identification of a feature set (i.e. a 149 

peak set) for downstream analysis. In the context of single-cell ATAC-seq, identification of peak 150 

regions prior to cluster identification requires peak calling from all cells as a single merged group. 151 

This effectively obscures cell type-specific chromatin accessibility which distorts downstream 152 

analyses. For Signac, a counts matrix is created using a pre-determined peak set, preventing the 153 

contribution of peaks that are specific to lowly represented cell types. Instead of using a pre-154 

determined peak set, SnapATAC creates a genome-wide tiled matrix of 5-kb bins, allowing for 155 

unbiased genome-wide identification of cell type-specific chromatin accessibility. However, 5-kb 156 

bins are substantially larger than the average regulatory element (~300-500 bp containing TF 157 

binding sites less than 50 bp)15–17, thus causing multiple regulatory elements to be grouped 158 

together, again obscuring cell type-specific biology. To avoid both of these pitfalls, ArchR operates 159 

on a genome-wide tiled matrix of 500-bp bins, allowing for the sensitivity to capture cell type-160 

specific biology at individual regulatory elements across the entire genome. Despite this 10-fold 161 

higher resolution tile matrix, ArchR stores both per-tile accessibility information and all ATAC-seq 162 

fragments in an Arrow file that is smaller than either the original input fragments or the Snap file 163 

from SnapATAC containing the genome-wide tiled matrix at only 5-kb resolution (Supplementary 164 

Fig. 2a-b).  165 

One major application of single-cell analysis is the identification of cellular subsets through 166 

dimensionality reduction and clustering. For dimensionality reduction, ArchR uses an optimized 167 

iterative latent semantic indexing (LSI) method6,7 (Supplementary Fig. 5a), Signac uses an LSI 168 

method, and SnapATAC uses a method based on Jaccard indices. When directly comparing the 169 
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results from these different dimensionality reduction methods, ArchR identified similar clusters to 170 

other methods while being less biased by low-quality cells and doublets (Supplementary Fig. 171 

5b). However, when comparing clustering of the bone marrow cell dataset, we found that ArchR 172 

alone maintained the continuous cellular hierarchy expected in this biological system 173 

(Supplementary Fig. 6a). 174 

To enable the efficient examination of extremely large datasets, ArchR implements a novel 175 

estimated LSI dimensionality reduction by first creating an iterative LSI reduction from a subset 176 

of the total cells, then linearly projecting the remainder of cells into this reduced dimension space 177 

using LSI projection7 (Supplementary Fig. 7a). We compared this approach to the landmark 178 

diffusion map (LDM) estimation method used by SnapATAC which uses a non-linear reduction 179 

based on a subset of cells and then projects the remainder of the cells into this subspace using 180 

LDM projection. When comparing “landmark” subsets of different cell numbers, the estimated LSI 181 

approach implemented by ArchR was more consistent and could recapitulate the clusters called 182 

and the overall structure of the data with as few as 50 cells across both the PBMC (N = 27,845 183 

cells) and bone marrow cell (N = 26,748 cells) datasets (Supplementary Fig. 7b and 8a-b). We 184 

speculate that this observed robustness stems from the linearity of the LSI projection as compared 185 

to LDM projection, which occurs in a non-linear subspace. The estimated LSI approach 186 

implemented by ArchR is also faster than the estimated LDM approach implemented by 187 

SnapATAC (Supplementary Fig. 8c). Furthermore, the efficiency of the standard iterative LSI 188 

implementation in ArchR limits the requirement for this estimated LSI approach to only extremely 189 

large datasets (>200,000 cells for 32 GB RAM and 8 cores), whereas estimated LDM approaches 190 

are required for comparatively smaller datasets (>25,000 cells for 32 GB and 8 cores) in 191 

SnapATAC. ArchR therefore has the capacity to rapidly and efficiently analyze both large- and 192 

small-scale datasets. 193 

 194 

Robust inference of gene scores enables accurate cluster identification with ArchR 195 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 29, 2020. . https://doi.org/10.1101/2020.04.28.066498doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.066498
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

After clustering, investigators often aim to annotate the biological state related to each cluster. 196 

Methods for inferring gene expression from scATAC-seq data can generate “gene scores” of key 197 

marker genes that can enable accurate cluster annotation5–8,18. However, the methods for 198 

integrating chromatin accessibility signal to generate these gene score predictions have not been 199 

extensively optimized. To this end, we used ArchR to benchmark 56 different models for inferring 200 

gene expression from scATAC-seq data using matched scATAC-seq and scRNA-seq data from 201 

PBMCs and bone marrow cells (Fig. 2a and Supplementary Table 3). To assess the 202 

performance of each model, we compared the known gene expression from previous methods 203 

integrating scATAC-seq with scRNA-seq7,11 to the inferred gene scores derived from the model. 204 

By first establishing a rough linkage of ATAC-seq to RNA expression across many relatively 205 

diverse cell types (Fig. 2a), we could then determine which method for integrating ATAC-seq 206 

signal to predict gene expression had the best global performance across these data. The 56 207 

gene score models varied by the regions included, the sizes of those regions, and the weights 208 

(based on genomic distance) applied to each region (Fig. 2b and Supplementary Fig. 9a-h). 209 

Models that incorporated ATAC-seq signal from the gene-body were more accurate than models 210 

that incorporated signal only from the promoter, likely due to the moderate increase in accessibility 211 

that occurs during active transcription. Moreover, incorporation of distal regulatory elements, 212 

weighted by distance, while accounting for the presence of neighboring genes (see methods) 213 

increased the accuracy of the gene score inference in all cases (Supplementary Fig. 9a-h). The 214 

most accurate model across both datasets was Model 42 (a model within the gene body extended 215 

+ exponential decay + gene boundary class of models) (Fig. 2b) which integrates signal from the 216 

entire gene body, and scales signal with bi-directional exponential decays from the gene TSS 217 

(extended upstream by 5 kb) and the gene transcription termination site (TTS) while accounting 218 

for neighboring genes boundaries (Fig. 2c). This model yielded robust genome-wide gene score 219 

predictions in both PBMC and bone marrow cell datasets (Fig. 2d-f and Supplementary Fig. 9i-220 

j). We additionally confirmed the efficacy of this class of gene score models using previously 221 
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published paired bulk ATAC-seq and RNA-seq data from hematopoietic cells (Supplementary 222 

Fig. 9k-m)19. Given this analysis, we implemented this class of gene score models via Model 42 223 

for all downstream analyses involving inferred gene expression in ArchR. 224 

 225 

ArchR enables comprehensive analysis of massive-scale scATAC-seq data 226 

ArchR is designed to handle datasets substantially larger (>1,000,000 cells) than those generated 227 

to date with modest computational resources. To illustrate this, we collected a compendium of 228 

high-quality published scATAC-seq data from immune cells generated with either the 10x 229 

Chromium system or the Fluidigm C1 system (49 samples, ~220k cells; Supplementary Figure 230 

10a-d). We refer to this compiled dataset as the hematopoiesis dataset. Using both a small-scale 231 

server infrastructure (8 cores, 32 GB RAM, with an HP Lustre file system) and a personal laptop 232 

(MacBook Pro laptop; 8 cores, 32 GB RAM, with an external USB hard drive), ArchR performed 233 

data import, dimensionality reduction, and clustering on ~220k cells in less than three hours (Fig. 234 

3a and Supplementary Fig. 10e). We next used ArchR to analyze a simulated set of over 1.2 235 

million PBMCs, split into 200 individual samples. Under the same computational constraints, 236 

ArchR performed data import, dimensionality reduction, and clustering of more than 1.2 million 237 

cells in under 8 hours (Fig. 3a and Supplementary Fig. 10e). 238 

Beyond these straightforward analyses, ArchR also provides an extensive suite of tools 239 

for more comprehensive analysis of scATAC-seq. Here we demonstrate these applications using 240 

the hematopoiesis dataset described above. Estimated LSI of this ~220k-cell dataset 241 

recapitulated the overall structure of the data with a landmark dataset of as few as 500 cells 242 

(Supplementary Fig. 10f). Manual inspection of the resultant clusters with our uniform manifold 243 

approximation and projection (UMAP)20 led us to use the 25,000 cell landmark set (~10% of total 244 

cells), which additionally showed minimal bias due to batch and data quality (Fig. 3b and 245 

Supplementary Fig. 10g-i). We identified 21 clusters spanning the hematopoietic hierarchy, 246 

calling clusters for even rare cell types such as plasma cells which comprise ~0.1% (265 cells) of 247 
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the total population. To generate a universal peak set from cluster-specific peaks, ArchR creates 248 

sample-aware pseudo-bulk replicates that recapitulate the biological variability within each cluster 249 

(Supplementary Fig. 11a). Peaks are then called from these pseudo-bulk replicates and a set of 250 

reproducible fixed-width non-overlapping peaks are identified using an iterative overlap merging 251 

procedure21 (Supplementary Fig. 11b). Using this approach, we identified 396,642 total 252 

reproducible peaks (Supplementary Fig. 11c), of which 215,916 are classified as differentially 253 

accessible peaks across the 21 clusters after bias-matched differential testing (see methods; Fig. 254 

3c). Motif enrichment within these marker peaks revealed known TF regulators of hematopoiesis 255 

such as GATA1 in erythroid populations, CEBPB in monocytes, and PAX5 in B cell differentiation 256 

(Fig. 3d). In addition to motif enrichments, ArchR can calculate peak overlap enrichment with a 257 

compendium of previously published ATAC-seq datasets19,21–26, identifying strong enrichment of 258 

peaks consistent with the cell type of each cluster (Supplementary Fig. 11d). To further 259 

characterize clusters, ArchR enables the projection of bulk ATAC-seq data into the single-cell-260 

derived UMAP embedding7 via a down-sampling approach (Supplementary Fig. 12a). This 261 

allows for projection of sorted cell types, facilitating the identification of clusters based on well-262 

validated bulk ATAC-seq profiles19 (Supplementary Fig. 12b). This projection analysis generates 263 

cell positions from bulk ATAC-seq data consistent with known cell types from a Fluidigm C1 264 

scATAC-seq dataset of sorted hematopoietic cells including highly-similar hematopoietic stem 265 

and progenitor cells4 (Supplementary Fig. 12c) and aligns with inferred gene scores for 266 

canonical hematopoietic marker genes (Supplementary Fig. 12d). 267 

ArchR also implements a scalable method for determination of transcription factor 268 

deviations from chromVAR27 in a sample independent manner (Supplementary Fig. 12e). TFs 269 

whose expression is highly correlated with their motif accessibility (i.e. putative positive 270 

regulators) can therefore be identified based on the correlation of the inferred gene score to the 271 

chromVAR motif deviation. This analysis identifies known drivers of hematopoietic differentiation 272 

such as GATA1 in erythroid populations, LEF1 in Naive T cell populations, and EOMES in NK/T 273 
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Cell Memory populations. (Fig. 3e, Supplementary Fig. 12f, and Supplementary Table 4). 274 

ArchR also enables rapid footprinting of these TF regulators within clustered subsets while 275 

accounting for Tn5 biases21 using an improved C++ implementation (Fig. 3f-h, Supplementary 276 

Fig. 12g-i). Finally, ArchR identifies links between regulatory elements and target genes based 277 

on the co-accessibility of pairs of loci across single cells1,18 (Fig. 3i). 278 

The interactive ArchR genome browser 279 

In addition to these robust ATAC-seq analysis paradigms, ArchR provides a fully integrated and 280 

interactive genome browser (Supplementary Fig. 13a). The responsive and interactive nature of 281 

the browser is enabled by the optimized storage format within each Arrow file, providing support 282 

for dynamic cell grouping, track resolution, coloration, layout, and more. Launched via a single 283 

command, the ArchR browser enables cell cluster investigations of marker genes such as CD34 284 

for early hematopoietic stem and progenitor cells and CD14 for monocytic populations (Fig. 3i 285 

and Supplementary Fig. 13b-e) while mitigating the need for external software for visualization 286 

of scATAC-seq data.  287 

 288 

ArchR enables integration of matched scRNA-seq and scATAC-seq datasets 289 

ArchR also provides functionality to integrate scATAC-seq data with scRNA-seq data using 290 

Seurat’s infrastructure11. In brief, this integration requires matching the chromatin accessibility 291 

profiles and RNA expression for independent heterogeneous cells measured with two different 292 

assays. Single-cell epigenome-to-transcriptome integration is essential for understanding 293 

dynamic gene regulatory processes, and we anticipate this sort of analysis will become even more 294 

prevalent with the advent of platforms for simultaneous scATAC-seq and scRNA-seq. ArchR 295 

efficiently performs this cross-data alignment in parallel using slices of the scATAC-seq data (Fig. 296 

4a). When performed on the hematopoiesis dataset, this integration enabled accurate scRNA-297 

seq alignment for >220,000 cells in less than 1 hour (Fig. 4b). The alignment showed high 298 

concordance between linked gene expression and inferred gene scores for common 299 
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hematopoietic marker genes (Fig. 4c and Supplementary Fig. 14a). Using this cross-platform 300 

alignment, ArchR also provides methods to identify putative cis-regulatory elements based on 301 

correlated peak accessibility and gene expression7,21 (Supplementary Fig. 15a). In the example 302 

hematopoiesis dataset, this analysis identified 70,239 significant peak-to-gene linkages across 303 

the hematopoietic hierarchy (Supplementary Fig. 15b and Supplementary Table 5). 304 

Finally, ArchR facilitates cellular trajectory analysis to identify the predicted path of gene 305 

regulatory changes from one set of cells to another, a unique type of insight enabled by single-306 

cell data. To carry out this analysis, ArchR initially creates a cellular trajectory based on a 307 

sequence of user-supplied clusters or groups. ArchR then identifies individual cell positions along 308 

this trajectory based on Euclidean distance within an N-dimensional subspace6. Using B cells as 309 

an example, ArchR traces cells along the B cell differentiation trajectory and identifies 11,999 310 

peak-to-gene links that have correlated regulatory dynamics across the B cell differentiation (Fig. 311 

4e). Sequencing tracks of the HMGA1 locus, active in stem and progenitor cells, and the BLK 312 

locus, active in differentiated B cells, demonstrate how accessibility at linked peaks correlates 313 

with longitudinal changes in gene expression across pseudo-time (Fig. 4f-g). Moreover, using 314 

this same paradigm, ArchR can identify TF motifs with accessibility that are positively correlated 315 

with gene expression of TF genes across the same B cell trajectory (Fig. 4h). Transcription factor 316 

footprinting of a subset of these TFs further illustrates the dynamics in the local accessibility at 317 

the binding sites of these lineage-defining TFs across B cell differentiation pseudo-time (Fig. 4i-318 

k). 319 

 320 

DISCUSSION 321 

Chromatin accessibility data provides a lens through which we can observe the gene regulatory 322 

programs that underlie cellular state and identity. The highly cell type-specific nature of cis-323 

regulatory elements makes profiling of single-cell chromatin accessibility an attractive method to 324 

understand cellular heterogeneity and the molecular processes underlying complex control of 325 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 29, 2020. . https://doi.org/10.1101/2020.04.28.066498doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.066498
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

gene expression. With the advent of methods to profile chromatin accessibility across thousands 326 

of single cells, scATAC-seq has quickly become a method-of-choice for many single-cell 327 

applications.  However, compared to scRNA-seq, analysis of scATAC-seq data remains 328 

comparatively immature with no clear standards, thus dissuading many from adopting this 329 

informative technique. 330 

 To address this unmet need, we developed ArchR, an end-to-end software solution that 331 

will greatly expedite single-cell chromatin analysis for any biologist. Low memory usage, 332 

parallelized operations, and an intuitive and user-focused, yet extensive and powerful tool suite 333 

make ArchR an ideal platform for scATAC-seq data analysis. In contrast to currently available 334 

software packages, ArchR is designed to handle millions of cells using commonly available 335 

computational resources, such as a laptop running a Unix-based operating system. As such, 336 

ArchR provides the analytical support necessary for the massive scale of ongoing efforts to 337 

catalog the compendium of diverse cell types throughout the body at single-cell resolution28. In 338 

addition to the dramatic improvements in run time, memory efficiency, and scale, ArchR supports 339 

state-of-the-art chromatin-based analyses including genome-wide inference of gene activity, 340 

transcription factor footprinting, and data integration with matched scRNA-seq, enabling statistical 341 

linkage of cis- and trans-acting regulatory factors to gene expression profiles. Moreover, the 342 

performance improvements from ArchR enable interactive data analysis whereby end-users can 343 

iteratively adjust analytical parameters and thus optimize identification of biologically meaningful 344 

results. This is especially important in the context of single-cell data where a one-size-fits-all 345 

analytical pipeline is not relevant or desirable. Supervised identification of clusters, resolution of 346 

subtle batch effects, and biology-driven data exploration are intrinsically necessary for a 347 

successful scATAC-seq analysis and ArchR supports these efforts by enabling rapid analytical 348 

processes. ArchR provides an open-source analysis platform with the flexibility, speed, and power 349 

to support the rapidly increasing efforts to understand complex tissues, organisms, and 350 

ecosystems at the resolution of individual cells. 351 
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Methods 352 

 353 

Code Availability and Documentation 354 

Extensive documentation and a full user manual are available at www.ArchRProject.com. The 355 

software is open-source and all code can be found on GitHub at 356 

https://github.com/GreenleafLab/ArchR. Additionally, code for producing the majority of analyses 357 

from this paper is available at the publication page https://github.com/GreenleafLab/ArchR_2020. 358 

 359 

Data Availability 360 

Bulk and scATAC-seq data from the cell line mixing experiment will be available through GEO 361 

(accession number in progress). All other scATAC-seq data used were from publicly available 362 

sources as outline in Supplementary Table 1. We additionally have made available other 363 

analysis files on our publication page https://github.com/GreenleafLab/ArchR_2020. 364 

 365 

Genome and Transcriptome Annotations 366 

All analyses were performed with the hg19 genome (except the Mouse Atlas with mm9). R-based 367 

analysis used the BSgenome package with “BSgenome.Hsapiens.UCSC.hg19” 368 

(“BSgenome.Mmusculus.UCSC.mm9” for Mouse Atlas)  for genomic coordinates and the TxDb 369 

package with “TxDb.Hsapiens.UCSC.hg19.knownGene” 370 

(“TxDb.Mmusculus.UCSC.mm9.knownGene” for Mouse Atlas) gene annotations unless 371 

otherwise stated. 372 

 373 

Cell Type Abbreviations 374 

In many of the figure legends, abbreviations are used for cell types of the hematopoietic system. 375 

HSC, hematopoietic stem cell; LMPP, lymphoid-primed multipotent progenitor cell; CMP, common 376 

myeloid progenitor; CLP, common lymphoid progenitor; GMP, granulocyte macrophage 377 
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progenitor; CD4 Mem, CD4 memory T cell; CD4 Naive, CD4 naïve T cell; CD8 Naive, CD8 naïve 378 

T cell; CD8 Eff, CD8 effector T cell; CD8 EffMem, CD8 effector memory T cell; CD8 CenMem, 379 

CD8 central memory T cell; Mono, monocyte; pDC, plasmacytoid dendritic cell; NK, natural killer 380 

cell; Ery, erythroid; Baso, basophil. 381 

 382 

scATAC-seq Data Generation – Cell Lines 383 

With the exception of MCF10A, all cell lines were cultured in the designated media containing 384 

10% FBS and penicillin/streptomycin. Jurkat, THP1, and K562 cell lines were ordered from ATCC 385 

and cultured in RPMI-1640. GM12878 cells were ordered from Coriell and cultured in RPMI-1640. 386 

HeLa, HEK-293T, and HT1080 cell lines were ordered from ATCC and cultured in DMEM. T24 387 

cells were ordered from ATCC and cultured in McCoy’s 5A. MCF7 cells were ordered from ATCC 388 

and cultured in EMEM containing 0.01 mg/ml of human insulin (Millipore-Sigma 91077C). 389 

MCF10A cells were ordered from ATCC and cultured in DMEM/F12 containing 5% horse serum 390 

(Thermo Fisher 16050130), 0.02 ug/ml human EGF (PeproTech AF-100-15), 0.5 ug/ml 391 

hydrocortisone (Millipore-Sigma H0888), 0.1 ug/ml Cholera toxin (Millipore-Sigma C8052), 10 392 

ug/ml insulin from bovine pancreas (Millipore-Sigma I6634), and penicillin/streptomycin. Cultured 393 

cells were viably cryopreserved in aliquots of 100,000 cells using 100 ul of BAMBANKER freezing 394 

media (Wako Chemicals 302-14681) so that scATAC-seq could be performed on all cells at the 395 

same time. For each cell line, cells were thawed via the addition of 1 mL ice-cold resuspension 396 

buffer (RSB) [10 mM Trish-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2] containing 0.1% Tween-20 397 

(RSB-T). Cells were pelleted in a fixed-angle rotor at 300 RCF for 5 minutes at 4°C. The 398 

supernatant was removed and the pellet was resuspended in 100 uL of ice-cold lysis buffer (RSB 399 

containing 0.1% Tween-20, 0.1% NP-40, and 0.01% digitonin) and incubated on ice for 3 minutes. 400 

To dilute lysis, 1 mL of chilled RSB-T was added to each tube and the cells were pelleted as 401 

before. The supernatant was removed and the pelleted nuclei were resuspended in Diluted Nuclei 402 

Buffer (10x Genomics). The nuclei stock concentration was determined for each cell line using 403 
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Trypan Blue and a total of 5,000 nuclei from each cell line were pooled together and loaded into 404 

the 10x Genomics scATAC-seq (v1) transposition reaction. The remainder of the scATAC-seq 405 

library preparation was performed as recommended by the manufacturer. Resultant libraries were 406 

sequenced on an Illumina NovaSeq6000 using an S4 flow cell and paired-end 99-bp reads. In 407 

addition to this pooled scATAC-seq, each cell line was used to generate bulk ATAC-seq libraries 408 

as described previously26. Bulk ATAC-seq libraries were pooled and purified via PAGE gel prior 409 

to sequencing on an Illumina HiSeq4000 using paired-end 75-bp reads. 410 

 411 

scATAC-seq Processing – Cell Line Mixing  412 

Raw sequencing data was converted to FASTQ format using cellranger-atac mkfastq (10x 413 

Genomics, version 1.0.0). Single-cell ATAC-seq reads were aligned to the hg19 reference 414 

genome (https://support.10xgenomics.com/single-cell-atac/software/downloads/latest) and 415 

quantified using cellranger-count (10x Genomics, version 1.0.0). Genotypes used to perform 416 

demuxlet were determined as follows for each cell line: Bulk ATAC-seq FASTQ files were 417 

processed and aligned using PEPATAC (http://code.databio.org/PEPATAC/) as described 418 

previously21. Peaks were identified using MACS2 and a union set of variable-width accessible 419 

regions was identified using bedtools merge (version 2.26.0). These accessible regions were 420 

genotyped across all samples using samtools mpileup (version 1.5) and Varscan mpileup2snp 421 

(version 2.4.3) with the following parameters “--min-coverage 5 --min-reads2 2 --min-var-freq 0.1 422 

--strand-filter 1 --output-vcf 1”. All positions containing a single nucleotide variant were compiled 423 

into a master set and then each cell line was genotyped at those specific single-base locations 424 

using samtools mpileup. The allelic depth at each position was converted into a quaternary 425 

genotype (homozygous A, heterozygous AB, homozygous B, or insufficient data to generate a 426 

confident call). Then, for each cell line, inferred genotype probabilities were created based on 427 

those quaternary genotypes and a VCF file was created for input to demuxlet using recommended 428 
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parameters. Demuxlet was used to identify the cell line of origin for individual cells and to identify 429 

doublets based on mixed genotypes. 430 

 431 

ArchR Methods – Preface 432 

All ArchR features were carefully designed and optimized to enable analysis of 250,000 cells or 433 

greater on a minimal computing environment in R. All ArchR HDF5-formatted processing was 434 

performed with the Bioconductor29 package “rhdf5” 435 

(https://www.bioconductor.org/packages/release/bioc/html/rhdf5.html). All ArchR genomic 436 

coordinate operations were performed with the Bioconductor package “GenomicRanges” 437 

(https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html) and “IRanges” 438 

(https://bioconductor.org/packages/release/bioc/html/IRanges.html).  439 

 440 

ArchR Methods – scATAC Definitions 441 

 442 

Fragments – In ATAC-seq data analysis, a “fragment” refers to a sequenceable DNA molecule 443 

created by two transposition events. Each end of that fragment is sequenced using paired-end 444 

sequencing. The inferred single-base position of the start and end of the fragment is adjusted 445 

based on the insertion offset of Tn5. As reported previously30, Tn5 transposase binds to DNA as 446 

a homodimer with 9-bp of DNA between the two Tn5 molecules. Because of this interaction, each 447 

Tn5 homodimer binding event creates two insertions, separated by 9 bp. Thus, the actual central 448 

point of the “accessible” site is in the very center of the Tn5 dimer, not the location of each Tn5 449 

insertion. To account for this, we apply an offset to the individual Tn5 insertions, adjusting plus-450 

stranded insertion events by +4 bp and minus-stranded insertion events by -5 bp. This offset is 451 

consistent with the convention put forth during the original description of ATAC-seq31. Thus, in 452 

ArchR, “fragments” refers to a table or Genomic Ranges object containing the chromosome, 453 
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offset-adjusted chromosome start position, offset-adjusted chromosome end position, and unique 454 

cellular barcode ID corresponding to each sequenced fragment. 455 

 456 

Tn5 insertions – In ArchR, “insertions” refers to the offset-adjusted single-base position of Tn5 457 

insertion on either end of the fragment. Insertion positions are accessed in ArchR primarily using 458 

resize(fragments, 1, “start”) and resize(fragments, 1, “end”). See the description of “fragments” 459 

above for a detailed description of Tn5 insertion offsets. 460 

 461 

Counting Accessibility – In ArchR, “counting accessibility” refers to counting the number of Tn5 462 

insertions observed within each described feature. 463 

 464 

TSS enrichment score – In ArchR, the “TSS enrichment” refers to the relative enrichment of Tn5 465 

insertions at gene TSS sites genome-wide compared to a local background. This represents a 466 

measure of signal-to-background in ATAC-seq data. See below for how TSS enrichment is 467 

calculated in ArchR. In this work, the TSS enrichment score from ArchR is based on the TSS 468 

regions defined by the TxDb.Hsapiens.UCSC.hg19.knownGene (or  469 

TxDb.Mmusculus.UCSC.mm9.knownGene  for the Mouse Atlas) transcript database object. 470 

 471 

ArchR Methods – Arrow Files and ArchRProject 472 

The base unit of an analytical project in ArchR is called an “Arrow file”. Each Arrow file stores all 473 

of the data associated with an individual sample (i.e. metadata, accessible fragments, and data 474 

matrices). Here, an "individual sample" would be the most detailed unit of analysis desired (for 475 

ex. a single replicate of a particular condition). During creation and as additional analyses are 476 

performed, ArchR updates and edits each Arrow file to contain additional layers of information. It 477 

is worth noting that, to ArchR, an Arrow file is actually just a path to an external file stored on disk. 478 

More explicitly, an Arrow file is not an R-language object that is stored in memory but rather an 479 
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HDF5-format file stored on disk. Because of this, we use an “ArchRProject” object to associate 480 

these Arrow files together into a single analytical framework that can be rapidly accessed in R. 481 

This ArchRProject object is small in size and is stored in memory. 482 

Certain actions can be taken directly on Arrow files while other actions are taken on an 483 

ArchRProject which in turn updates each associated Arrow file. Because Arrow files are stored 484 

as large HDF5-format files, "get-er" functions in ArchR retrieve data by interacting with the 485 

ArchRProject while "add-er" functions either (i) add data directly to Arrow files, (ii) add data directly 486 

to an ArchRProject, or (iii) add data to Arrow files by interacting with an ArchRProject. 487 

 488 

ArchR Methods – Reading Input Data into an Arrow File 489 

ArchR can utilize multiple input formats of scATAC-seq data which is most frequently in the format 490 

of fragment files and BAM files. Fragment files are tabix-sorted text files containing each scATAC-491 

seq fragment and the corresponding cell ID, one fragment per line. BAM files are binarized tabix-492 

sorted files that contain each scATAC-seq fragment, raw sequence, cellular barcode id and other 493 

information. The input format used will depend on the pre-processing pipeline used. For example, 494 

the 10x Genomics Cell Ranger software returns fragment files while sci-ATAC-seq applications 495 

would use BAM files. Given a specified genome annotation (ArchR has pre-loaded genome 496 

annotations for mm9, mm10, hg19, and hg38 and additional genomes can be added manually), 497 

ArchR reads these input files in sub-chromosomal chunks using Rsamtools. ArchR uses 498 

“scanTabix” to read fragment files and “scanBam” to read BAM files. During this input process, 499 

each input chunk is converted into a compressed table-based representation of fragments 500 

containing each fragment chromosome, offset-adjusted chromosome start position, offset-501 

adjusted chromosome end position and cellular barcode ID. These chunk-wise fragments are 502 

then stored in a temporary HDF5-formatted file to preserve memory usage while maintaining rapid 503 

access to each chunk. Finally, all chunks associated with each chromosome are read, organized, 504 

and re-written to an “Arrow file” within a single HDF5 group called “fragments”. This pre-chunking 505 
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procedure enables ArchR to process extremely large input files efficiently and with low memory 506 

usage, enabling full utilization of parallel processing. 507 

 508 

ArchR Methods – QC Based on TSS Enrichment and Unique Nuclear Fragments 509 

Strict quality control (QC) of scATAC-seq data is essential to remove the contribution of low-510 

quality cells. In ArchR, one characteristic of “low-quality” is a low signal-to-background ratio, which 511 

is often attributed to dead or dying cells which have de-chromatinzed DNA which allows for 512 

random transposition genome-wide. Traditional bulk ATAC-seq analysis has used the TSS 513 

enrichment score as part of a standard workflow (https://www.encodeproject.org/atac-seq/) for 514 

determination of signal-to-background. We and others have found the TSS enrichment to be 515 

representative across the majority of cell types tested in both bulk ATAC-seq and scATAC-seq. 516 

The idea behind the TSS enrichment score metric is that ATAC-seq data is universally enriched 517 

at gene TSS regions compared to other genomic regions. By looking at per-base-pair accessibility 518 

centered at these TSS regions, we see a local enrichment relative to flanking regions (1900-2000 519 

bp distal in both directions). The ratio between the peak of this enrichment (centered at the TSS) 520 

relative to these flanking regions represents the TSS enrichment score. Traditionally, the per-521 

base-pair accessibility is computed for each bulk ATAC-seq sample and then this profile is used 522 

to determine the TSS enrichment score. Performing this operation on a per-cell basis in scATAC-523 

seq is relatively slow and computationally expensive. To accurately approximate the TSS 524 

enrichment score per single cell, we count the average accessibility within a 50-bp region 525 

centered at each single-base TSS position and divide this by the average accessibility of the TSS 526 

flanking positions (+/- 1900 – 2000 bp). This approximation was highly correlated (R > 0.99) with 527 

the original method and values were extremely close in magnitude. By default in ArchR, pass-528 

filter cells are identified as those cells having a TSS enrichment score greater than 4 and more 529 

than 1000 unique nuclear fragments (i.e those fragments that do not map to chrM). 530 

 531 
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ArchR Methods – Tile Matrix 532 

Traditional bulk ATAC-seq analysis relies on the creation of a peak matrix from a peak-set 533 

encompassing the precise accessible regions across all samples. This peak set, and thus the 534 

resulting peak matrix, is specific to the samples used in the analysis and must be re-generated 535 

when new samples are added. Moreover, identification of peaks from scATAC-seq data would 536 

optimally be performed after clusters were identified to ensure that cluster-specific peaks are 537 

captured. Thus, the optimal solution for scATAC-seq would be to identify an unbiased and 538 

consistent way to perform analysis prior to cluster identification, without the need for calling peaks. 539 

xbecause this bin size approximates the size of most regulatory elements. To circumvent the 540 

requirement for calling peaks prior to cluster identification, others have tiled the genome into fixed 541 

non-overlapping tiled windows. This method additionally benefits from being stable across 542 

samples and the tiled regions do not change based on inclusion of additional samples. However, 543 

these tiled windows are usually greater than or equal to 5 kb in length, which is more than 10-fold 544 

greater than the size of typical accessible regions containing TF binding sites15–17. For this reason, 545 

ArchR uses 500-bp genome-wide tiled windows for all analysis upstream of cluster identification. 546 

To create a tile matrix, ArchR reads in the scATAC-seq fragments for a chromosome and converts 547 

these to insertions. ArchR then floors these insertions to the nearest tile region with floor(insertion 548 

/ tileSize) + 1. The tile regions and cell barcode id (as an integer) are then used as input for 549 

Matrix::sparseMatrix which tallies the number of input rows (tiles, denoted as i) and columns (cells, 550 

denoted as j) and creates a sparseMatrix. This analysis is performed for each chromosome and 551 

stored in the corresponding Arrow file. This fast and efficient conversion of scATAC-seq fragments 552 

to a tile matrix, without computing genomic overlaps, facilitates efficient construction of 500-bp 553 

tile matrices for analyses.  554 

 555 

ArchR Methods – Gene Score Matrix 556 
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ArchR facilitates the inference of gene expression from chromatin accessibility (called “gene 557 

scores”) by using custom distance-weighted accessibility models. For each chromosome, ArchR 558 

creates a tile matrix (user-defined tile size that is not pre-computed, default is 500 bp), overlaps 559 

these tiles with the gene window (user-defined, default is 100 kb), and then computes the distance 560 

from each tile (start or end) to the gene body (with optional extensions upstream or downstream) 561 

or gene start. We have found that the best predictor of gene expression is the local accessibility 562 

of the gene region which includes the promoter and gene body (Supplementary Fig. 9). To 563 

properly account for distal accessibility, for each gene ArchR identifies the subset of tiles that are 564 

within the gene window and do not cross another gene region. This filtering allows for inclusion 565 

of distal regulatory elements that could improve the accuracy of predicting gene expression values 566 

but excludes regulatory elements more likely to be associated with another gene (for ex. the 567 

promoter of a nearby gene). The distance from each tile to the gene is then converted to a 568 

distance weight using a user-defined accessibility model (default is e(-abs(distance)/5000) + e-1). When 569 

the gene body is included in the gene region (where the distance-based weight is the maximum 570 

weight possible), we found that extremely large genes can bias the overall gene scores. In these 571 

cases, the total gene scores can vary substantially due to the inclusion of insertions in both introns 572 

and exons. To help adjust for these large differences in gene size, ArchR applies a separate 573 

weight for the inverse of the gene size (1 / gene size) and scales this inverse weight linearly from 574 

1 to a hard max (which can be user-defined, with a default of 5). Smaller genes thus receive larger 575 

relative weights, partially normalizing this length effect. The corresponding distance and gene size 576 

weights are then multiplied by the number of Tn5 insertions within each tile and summed across 577 

all tiles within the gene window (while still accounting for nearby gene regions as described 578 

above). This summed accessibility is a “gene score” and is depth normalized across all genes to 579 

a constant (user-defined, default of 10,000). Computed gene scores are then stored in the 580 

corresponding Arrow file for downstream analyses. 581 

 582 
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ArchR Methods – Iterative LSI Procedure 583 

The default LSI implementation in ArchR is conceptually similar to the method introduced in 584 

Signac (https://satijalab.org/signac/), which, for a cell x features matrix (typically tiles or peaks), 585 

uses a term frequency (column sums) that has been depth normalized to a constant (10,000) 586 

followed by normalization with the inverse document frequency (1 / row sums) and then log-587 

transformed (aka log(TF-IDF)). This normalized matrix is then factorized by singular value 588 

decomposition (SVD) and then standardized across the reduced dimensions for each cell via z-589 

score. ArchR additionally allows for the use of alternative LSI implementations based on 590 

previously published scATAC-seq papers5–7. As mentioned above, the input to LSI-based 591 

dimensionality reduction is the genome-wide 500-bp tile matrix. 592 

In scRNA-seq, identifying variable genes is a common way to compute dimensionality 593 

reduction (such as PCA), as these highly variable genes are more likely to be biologically 594 

important, and focusing on these genes likely reduces low-level contributions of variance 595 

potentially due to experimental noise. ScATAC-seq data is binary, precluding the possibility of 596 

identifying variable peaks for dimensionality reduction. Therefore, rather than identifying the most 597 

variable peaks, we initially tried using the most accessible features as input to LSI; however, the 598 

results when running multiple samples exhibited a high degree of noise and low reproducibility. 599 

We therefore moved to our previously described "iterative LSI" approach6,7. This approach 600 

computes an initial LSI transformation on the most accessible tiles and identifies lower resolution 601 

clusters that are driven by clear biological differences. For example, when performed on 602 

peripheral blood mononuclear cells, this approach will identify clusters corresponding to the major 603 

cell types (T cells, B cells, and monocytes). Then ArchR computes the average accessibility for 604 

each of these clusters across all features creating "pseudo-bulks". ArchR then identifies the most 605 

variable peaks across these pseudo-bulks to use as features for the second round of LSI. In this 606 

second iteration, the selected variable peaks correspond more similarly to the variable genes 607 

used in scRNA-seq LSI implementations, insofar as they are highly variable across biologically 608 
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meaningful clusters. We have found this approach can also effectively minimize batch effects and 609 

allows operations on a more reasonably sized feature matrix. Additionally, we observe that this 610 

procedure still allows the identification of rare cell types, such as plasma cells in the bone marrow 611 

cell dataset that exist at ~0.1% prevalence. For larger batch effects, ArchR enables Harmony-612 

based batch correction on the LSI-reduced coordinates32. 613 

 614 

ArchR Methods – Estimated LSI Procedure 615 

For extremely large scATAC-seq datasets, ArchR can estimate the LSI dimensionality reduction 616 

with LSI projection. This procedure is similar to the iterative LSI workflow, however the LSI 617 

procedure differs. First, a subset of randomly selected “landmark” cells is used for LSI 618 

dimensionality reduction. Second, the remaining cells are TF-IDF normalized using the inverse 619 

document frequency determined from the landmark cells. Third, these normalized cells are 620 

projected into the SVD subspace defined by the landmark cells. This leads to an LSI 621 

transformation based on a small set of cells used as landmarks for the projection of the remaining 622 

cells. This estimated LSI procedure is efficient with ArchR because, when projecting the new cells 623 

into the landmark cells LSI, ArchR iteratively reads in the cells from each sample and LSI projects 624 

them without storing them all in memory. This optimization leads to minimal memory usage and 625 

further increases the scalability for extremely large datasets. Even with comparatively small 626 

landmark cell subsets (500-5000 cells), we find that this procedure is able to maintain the global 627 

structure and recapitulates the clusters well; however, the required landmark set size is 628 

dependent on the proportion of different cells within the dataset. 629 

 630 

ArchR Methods – Identification of Doublets 631 

Single-cell data generated on essentially any platform is susceptible to the presence of doublets. 632 

A doublet refers to a single nano-reaction (i.e. a droplet) that received a single barcoded bead 633 

and more than one cell/nucleus. This causes the reads from more than one cell to appear as a 634 
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single cell. For 10x Genomics applications, the percentage of total "cells" that are actually 635 

doublets is proportional to the number of cells loaded into the reaction. Even at lower cell loadings 636 

as recommended by standard kit use, more than 5% of the data may come from doublets, and 637 

this spurious data exerts substantial effects on clustering. This issue becomes particularly 638 

problematic in the context of developmental/trajectory data because doublets can look like a 639 

mixture between two cell types and this can be confounded with intermediate cell types or cell 640 

states. 641 

To predict which "cells" are actually doublets in ArchR, we synthesize in silico doublets 642 

from the data by mixing the reads from thousands of combinations of individual cells. Next, we 643 

perform iterative LSI followed by UMAP for each individual sample. We then LSI project the 644 

synthetic doublets into the LSI subspace followed by UMAP projection. ArchR identifies the k-645 

nearest neighbors (user-defined, default 10) to each simulated projected doublet. By iterating this 646 

procedure N times (user-defined, default 3 times the total number of cells), we can compute 647 

binomial enrichment statistics (assuming every cell could be a doublet with equal probability) for 648 

each single cell based on the presence of nearby simulated projected doublets (in the LSI or 649 

UMAP subspace defined by the user). This approach is similar to previous approaches12,13, but 650 

differs in that LSI is used for dimensionality reduction and UMAP projection is used for 651 

identification. The number of doublets to remove is then determined based on either the number 652 

of cells that pass QC or for the approximate number of cells loaded as defined by the user. While 653 

we have optimized these parameters for general use, users should sensibly check their results 654 

with and without doublet removal.  655 

 656 

ArchR Methods – Identification of Clusters 657 

ArchR uses established scRNA-seq clustering methods that use graph clustering on the LSI 658 

dimensionality reduction coordinates to resolve clusters. By default, ArchR uses Seurat’s graph 659 
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clustering with “Seurat::FindClusters” for identifying high fidelity clusters11. ArchR additionally 660 

supports scran33 for single-cell clustering. 661 

 662 

 663 

ArchR Methods – t-SNE and UMAP Embeddings 664 

ArchR supports both t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold 665 

approximation and projection (UMAP) single-cell embedding methodologies. ArchR uses 666 

previously determined reduced dimensions as input for these embeddings. t-SNE analysis is 667 

performed using the “Rtsne” package in R by default. UMAP analysis is performed using the 668 

“uwot” package in R by default. The results are stored within an ArchRProject and then used for 669 

plotting and subsequent analyses. 670 

 671 

ArchR Methods – Sample-Aware Pseudo-Bulk Replicate Generation 672 

Because of the sparsity of scATAC-seq data, operations are often performed on aggregated 673 

groups of single cells. Most frequently, these groups are defined by clustering, and it is assumed 674 

that each local cluster represents a relatively homogeneous cell type or cell state. This process 675 

of combining data from multiple individual cells creates “pseudo-bulk” data, because it resembles 676 

the data derived from a bulk ATAC-seq experiment. 677 

A feature unique to ArchR is the creation of sample-aware pseudo-bulk replicates from 678 

each cell group to use for performing statistical tests (such as reproducible peak identification or 679 

TF footprinting). ArchR does this via a complex decision tree which is dependent upon a user-680 

specified desired number of replicates and number of cells per replicate as presented in 681 

Supplementary Fig. 11a. Briefly, ArchR attempts to create pseudo-bulk replicates in a sample-682 

aware fashion. This means that each individual pseudo-bulk replicate only contains cells from a 683 

single biological sample. This feature enables the preservation of variability associated with 684 

biological replicates. If the desired number of replicates cannot be created in this fashion, ArchR 685 
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uses progressively less stringent requirements to create the pseudo-bulk replicates. First, ArchR 686 

attempts to create as many pseudo-bulk replicates in a sample-aware fashion as possible and 687 

then create the remaining pseudo-bulk replicates in a sample-agnostic fashion by sampling 688 

without replacement. If this is not possible, ArchR attempts to create the desired number of 689 

pseudo-bulk replicates in a sample-agnostic fashion by sample without replacement across all 690 

samples. If this is not possible, ArchR attempts the same procedure by sampling without 691 

replacement within a single replicate but with replacement across different replicates without 692 

exceeding a user-specified sampling ratio. If all of these attempts fail, ArchR will create the 693 

specified number of pseudo-bulk replicates by sampling with replacement within a single replicate 694 

and with replacement across different replicates. The fragments from all cells within a pseudo-695 

bulk replicate are converted to insertions and to a run-length encoding (RLE) coverage object 696 

using the “coverage” function in R. This insertion coverage object (similar to a bigwig) is then 697 

written to a separate HDF5-formatted coverage file. ArchR next identifies single-base resolution 698 

Tn5 insertion sites for each pseudo-bulk replicate, resizes these 1-bp sites to k-bp (user-defined, 699 

default is 6) windows (-k/2 and + (k/2 - 1) bp from insertion), and then creates a k-mer frequency 700 

table using the “oligonucleotidefrequency(w=k, simplify.as=”collapse”)” function from the 701 

Biostrings package. ArchR then calculates the expected k-mers genome-wide using the same 702 

function with the BSGenome-associated genome file. These Tn5 k-mer values represent the Tn5 703 

bias genome-wide and are then stored in the pseudo-bulk replicate HDF5 coverage file. This 704 

coverage file contains similar information to a bigwig file with Tn5 insertion bias but in a fast-705 

access HDF5 format. This coverage file can be used for peak-calling and TF footprinting with Tn5 706 

bias correction. 707 

 708 

ArchR Methods – Peak Calling 709 

In ArchR, peak calling is performed on the HDF5-format pseudo-bulk-derived coverage files 710 

described above. By default, ArchR calls peak summits with MACS2 using single-base insertion 711 
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positions derived from the coverage files (written to a bed file with data.table) with user-specified 712 

values for MACS2 parameters including gsize, shift (default -75), and extsize (default 150) along 713 

with the “nomodel” and “nolambda” flags. These single-base peak summit locations are extended 714 

to a 501-bp width. We use 501-bp fixed-width peaks because they make downstream computation 715 

easier as peak length does not need to be normalized. Moreover, the vast majority of peaks in 716 

ATAC-seq are less than 501-bp wide. Using variable-width peaks also makes it difficult to merge 717 

peak calls from multiple samples without creating extremely large peaks that create confounding 718 

biases. 719 

 To create a merged non-overlapping fixed-width union peak set, ArchR implements an 720 

iterative overlap removal procedure that we introduced previously21. Briefly, peaks are first ranked 721 

by their significance, then the most significant peak is retained and any peak that directly overlaps 722 

with the most significant peak is removed from further analysis. This process is repeated with the 723 

remaining peaks until no more peaks exist. This procedure avoids daisy-chaining and still allows 724 

for use of fixed-width peaks. We use a normalized metric for determining the significance of peaks 725 

because the reported MACS2 significance is proportional to the sequencing depth. This process 726 

is outlined in Supplementary Fig. 11b. 727 

 728 

ArchR Methods – Interactive Genome Browser 729 

One challenge inherent to scATAC-seq data analysis is genome-track level visualizations of 730 

chromatin accessibility observed within groups of. Traditionally, track visualization requires 731 

grouping the scATAC-seq fragments, creating a genome coverage bigwig, and normalizing this 732 

track for quantitative visualization. Typically, end-users use a genome browser such as the 733 

WashU Epigenome Browser, the UCSC Genome Browser, or the IGV browser to visualize these 734 

sequencing tracks. This process involves using multiple software and any change to the cellular 735 

groups or addition of more samples requires re-generation of bigwig files etc., which can become 736 

time consuming. For this reason, ArchR has a Shiny-based interactive genome browser that can 737 
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be launched with a simple line of code “ArchRBrowser(ArchRProj)”. The data storage strategy 738 

implemented in Arrow files allows this interactive browser to dynamically change the cell 739 

groupings, resolution, and normalization, enabling real-time track-level visualizations. The ArchR 740 

Genome Browser also creates high-quality vectorized images in PDF format for publication or 741 

distribution. Additionally, the browser accepts user-supplied input files such as BED files or 742 

GenomicRanges to display features or genomic interaction files that define co-accessibility, peak-743 

to-gene linkages, or loops from chromatin conformation data.  744 

To facilitate this interactive browser, ArchR utilizes the same optimizations described 745 

above for creating a genome-wide TileMatrix to create a TileMatrix for the chosen resolution 746 

specified within the plotting window. Cells corresponding to the same group are summed per tile 747 

and the resulting group matrix represents the accessibility in tiles across the specified window. 748 

This matrix can then be normalized by either the total number of reads in TSS/peak regions, the 749 

total number of cells, or the total number of unique nuclear fragments. By default, ArchR uses the 750 

reads in TSS regions, because this value is computed upon the creation of an Arrow file and is 751 

stable across analyses, unlike the peak regions. Because fragments in Arrow files are split per 752 

chromosome, the low memory cost and high speed of this process enables interactive 753 

visualization of hundreds of thousands of cells in seconds. Additionally, ArchR can plot tracks 754 

without the genome browser using the ArchRBrowserTrack function. ArchR also enables direct 755 

export of group normalized bigwig files using “export.bw” from Rtracklayer that can be directly 756 

used in conventional genome browsers. 757 

 758 

ArchR Methods - Peak Matrix 759 

Once a peak set has been created (see ArchR Methods – Peak Calling), a cell x peak matrix can 760 

readily be made with ArchR. For each Arrow file, ArchR reads in scATAC-seq fragments from 761 

each chromosome and then computes overlaps with the peaks from the same chromosome. A 762 
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sparse matrix cell x peak matrix is created for these peaks. The matrix is then added to the 763 

corresponding Arrow file. This procedure is iterated across each chromosome.  764 

 765 

ArchR Methods – Creation of Low-Overlapping Aggregates of Cells for Linkage Analysis 766 

ArchR facilitates many integrative analyses that involve correlation of features. Performing these 767 

calculations with sparse single-cell data can lead to substantial noise in these correlative 768 

analyses. To circumvent this challenge, we adopted an approach introduced by Cicero18 to create 769 

low-overlapping aggregates of single cells prior to these analyses. We filter aggregates with 770 

greater than 80% overlap with any other aggregate in order to reduce bias. To improve the speed 771 

of this approach, we developed an implementation of an optimized iterative overlap checking 772 

routine and a implementation of fast feature correlations in C++ using the “Rcpp” package. These 773 

optimized methods are used in ArchR for calculating peak co-accessibility, peak-to-gene linkage, 774 

and for other linkage analyses. 775 

 776 

ArchR Methods – Peak Co-Accessibility 777 

Co-accessibility analyses have been shown to be useful in downstream applications such as 778 

identifying groups of peaks that are all correlated forming “co-accessible networks”18. ArchR can 779 

rapidly compute peak co-accessibility from a peak matrix. These co-accessibility links can 780 

optionally be visualized using the ArchRBrowser. First, ArchR identifies 500+ low-overlapping cell 781 

aggregates (see Creation of Low-Overlapping Aggregates of Cells for Linkage Analysis).  Second, 782 

for each chromosome (independently stored within an Arrow file), ArchR reads in the peak matrix 783 

and then creates the cell aggregate x peak matrix. ArchR next identifies all possible peak-to-peak 784 

combinations within a given window (by default 250 kb) and then computes the Pearson 785 

correlation of the log2-normalized cell aggregate x peak matrix. In this procedure, column sums 786 

across all chromosomes are used for depth normalization. ArchR iterates through all 787 

chromosomes and then combines the genome-wide results and stores them within the 788 
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ArchRProject. These can be readily accessed for downstream applications. Additionally, ArchR 789 

enables users to lower the resolution of these interactions to better visualize the main interactors 790 

(keeping the highest correlation value observed in each window).  791 

 792 

ArchR Methods – Motif Annotations 793 

ArchR enables rapid, fine-grained motif analyses. To carry out these analyses, ArchR must first 794 

identify the locations of all motifs in peak regions. ArchR natively supports access to motif sets 795 

curated from chromVAR27 and JASPAR34 to be used for these motif analyses. Additionally, ArchR 796 

makes possible the usage of multiple motif databases independently. ArchR first identifies motifs 797 

in peak regions using the matchMotifs function from the “motifmatchr” package 798 

(https://greenleaflab.github.io/motifmatchr/) with output being the motif positions within peaks. 799 

ArchR then creates a boolean motif overlap sparse matrix for each motif-peak combination that 800 

can be used for downstream applications such as enrichment testing and chromVAR. The motif 801 

positions and motif overlap matrix are stored on disk as an RDS file for later access, which 802 

minimizes the total memory of the ArchRProject, freeing memory for other analyses. 803 

 804 

ArchR Methods – Feature Annotations 805 

ArchR allows for peak overlap analyses with defined feature sets. These feature sets could be 806 

ENCODE ChIP-seq/ATAC-seq peak sets or anything that can be specified as a GenomicRanges 807 

object. To facilitate this operation, we have curated a compendium of previously published ATAC-808 

seq peak sets19,21–23,26, ENCODE ChIP-seq peak sets, and other custom feature sets for end-809 

users35. We believe these custom feature sets will help users better annotate and describe cell 810 

types identified with scATAC-seq. These feature sets are overlapped with the ArchRProject peak 811 

set and then stored as a boolean feature overlap sparse matrix for each feature-peak combination 812 

that can be used for downstream applications such as enrichment testing and chromVAR. This 813 
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feature overlap matrix is then stored on disk as an RDS file for later access, which minimizes the 814 

total memory of the ArchRProject, freeing memory for other analyses. 815 

 816 

ArchR Methods – Marker Peak Identification with Annotation Enrichment 817 

ArchR allows for robust identification of features that are highly specific to a given group/cluster 818 

to elucidate cluster-specific biology. ArchR can identify these features for any of the matrices that 819 

are created with ArchR (stored in the Arrow files). ArchR identifies marker features while 820 

accounting for user-defined known biases that might confound the analysis (defaults are the TSS 821 

enrichment score and the number of unique nuclear fragments). For each group/cluster, ArchR 822 

identifies a set of background cells that match for the user-defined known biases and weights 823 

each equivalently using quantile normalization. Additionally, when selecting these bias-matched 824 

cells ArchR will match the distribution of the other user-defined groups. For example, if there were 825 

4 equally represented clusters, ArchR will match the biases for a cluster to the remaining 3 826 

clusters while selecting cells from the remaining 3 groups equally. By selecting a group of bias-827 

matched cells, ArchR can directly minimize these confounding variables during differential testing 828 

rather than using modeling-based approaches. ArchR allows for binomial testing, Wilcoxon testing 829 

(via presto, https://github.com/immunogenomics/presto/), and two-sided t-testing for comparing 830 

the group to the bias-matched cells. These p-values are then adjusted for multiple hypothesis 831 

testing and organized across all group/clusters. This table of differential results can then be used 832 

to identify marker features based on user-defined log2(Fold Change) and FDR cutoffs. 833 

 834 

ArchR Methods – chromVAR Deviations Matrix 835 

ArchR facilitates chromVAR analysis to identify deviation of accessibility within peak annotations 836 

(i.e. motif overlaps) compared to a controlled background set of bias-matched peaks. A challenge 837 

in using the published version of the chromVAR software is that it requires the full cell x peak 838 

matrix to be loaded into memory in order to compute these deviations. This can lead to dramatic 839 
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increases in run time and memory usage for moderately sized datasets (~50,000 cells). To 840 

circumvent these limitations, ArchR implements the same chromVAR analysis workflow by 841 

analyzing sample sub-matrices independently (see Supplementary Fig. 12e). First, ArchR reads 842 

in the global accessibility per peak across all cells. Second, for each peak, ArchR identifies a set 843 

of background peaks that are matched by GC-content and accessibility. Third, ArchR uses this 844 

background set of peaks and global accessibility to compute bias-corrected deviations with 845 

chromVAR for each sample independently. This implementation requires data from only 5,000-846 

10,000 cells to be loaded into memory at any given time, minimizing the memory requirements, 847 

enabling scalable analysis with chromVAR, and improving run-time performance. 848 

 849 

ArchR Methods – Identification of Positive TF-Regulators 850 

ATAC-seq allows for the unbiased identification of TFs that exhibit large changes in chromatin 851 

accessibility at sites containing their DNA binding motifs. However, families of TFs (for ex. GATA 852 

factors) share similar features in their binding motifs when looking in aggregate through position 853 

weight matrices (PWMs). This motif similarity makes it challenging to identify the specific TFs that 854 

might be driving observed changes in chromatin accessibility at their predicted binding sites. To 855 

circumvent this challenge, we have previously used gene expression to identify TFs whose gene 856 

expression is positively correlated to changes in the accessibility of their corresponding motif21. 857 

We term these TFs “positive regulators”. However, this analysis relies on matched gene 858 

expression data which may not be readily available in all experiments. To overcome this 859 

dependency, ArchR can identify TFs whose inferred gene scores are correlated to their 860 

chromVAR TF deviation scores. To achieve this, ArchR correlates chromVAR deviation scores of 861 

TF motifs with gene activity scores of TF genes from the low-overlapping cell aggregates (see 862 

above). When using scRNA-seq integration with ArchR, gene expression of the TF can be used 863 

instead of inferred gene activity score. 864 

 865 
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ArchR Methods – TF Footprinting 866 

ATAC-seq enables profiling of TF occupancy at base-pair resolution with TF footprinting. TF 867 

binding to DNA protects the protein-DNA binding site from transposition while the displacement 868 

or depletion of one or more adjacent nucleosomes creates increased DNA accessibility in the 869 

immediate flanking sequence. Collectively, these phenomena are referred to as the TF footprint. 870 

To accurately profile TF footprints, a large number of reads are required. Therefore, cells are 871 

grouped to create pseudo-bulk ATAC-seq profiles that can be then used for TF footprinting.  872 

One major challenge with TF footprinting using ATAC-seq data is the insertion sequence 873 

bias of the Tn5 transposase21,36,37 which can lead to misclassification of TF footprints. To account 874 

for Tn5 insertion bias ArchR identifies the k-mer (user-defined length, default length 6) sequences 875 

surrounding each Tn5 insertion site. To do this analysis, ArchR identifies single-base resolution 876 

Tn5 insertion sites for each pseudo-bulk (see above Sample-Aware Pseudo-Bulk Replicate 877 

Generation), resizes these 1-bp sites to k-bp windows (-k/2 and + (k/2 - 1) bp from insertion), and 878 

then creates a k-mer frequency table using the “oligonucleotidefrequency(w=k, 879 

simplify.as=”collapse”)” function from the Biostrings package. ArchR then calculates the expected 880 

k-mers genome-wide using the same function with the BSgenome-associated genome file. To 881 

calculate the insertion bias for a pseudo-bulk footprint, ArchR creates a k-mer frequency matrix 882 

that is represented as all possible k-mers across a window +/- N bp (user-defined, default 250 bp) 883 

from the motif center. Then, iterating over each motif site, ArchR fills in the positioned k-mers into 884 

the k-mer frequency matrix. This is then calculated for each motif position genome-wide. Using 885 

the sample’s k-mer frequency table, ArchR can then compute the expected Tn5 insertions by 886 

multiplying the k-mer position frequency table by the observed/expected Tn5 k-mer frequency. 887 

For default TF footprinting with ArchR, motif positions (stored in the ArchRProject) are extended 888 

+/- 250 bp centered at the motif binding site. The pseudo-bulk replicates (stored as a HDF5-format 889 

coverage files) are then read into R as a coverage run-length encoding. For each individual motif, 890 

ArchR iterates over the chromosomes, computing a “Views” object using 891 
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“Views(coverage,positions)”. ArchR uses an optimized C++ function to compute the sum per 892 

position in the Views object. This implementation enables fast and efficient footprinting 893 

(Supplementary Fig. 12g-i). 894 

 895 

ArchR Methods – Bulk ATAC-seq LSI projection 896 

ArchR allows for projection of bulk ATAC-seq data into a scATAC-seq subspace as previously 897 

described7. ArchR first takes as input a bulk ATAC-seq sample x peak matrix and then identifies 898 

which peaks overlap the features used in the scATAC-seq dimensionality reduction. If there is 899 

sufficient overlap, ArchR estimates a scATAC-seq pseudo-cell x feature matrix within the features 900 

identified to overlap. These pseudo-cells (N = 250) per sample are sampled to be at 0.5x, 1x, 1.5x 901 

and 2x the average accessibility of the cell x feature matrix used. This step prevents unwanted 902 

sampling depth bias for this bulk projection analysis. The pseudo-cell x feature matrix is then 903 

normalized with the term-frequency x inverse document frequency (TF-IDF) method, using the 904 

same inverse document frequency obtained during the scATAC-seq dimensionality reduction. 905 

This normalized pseudo-cell x feature matrix is then projected with singular value decomposition 906 

“t(TF_IDF) %*% SVD$u %*% diag(1/SVD$d)” where TF_IDF is the transformed matrix and SVD 907 

is the previous SVD run using irlba in R. This reduced pseudo-cell x dim matrix can then be input 908 

to “uwot::umap_transform” which uses the previous scATAC-seq UMAP embedding to project the 909 

pseudo-cells into this embedding. 910 

 911 

ArchR Methods – Data Imputation with MAGIC 912 

ArchR allows for using features such as gene scores and chromVAR deviation scores to assist in 913 

cluster annotation. However, features such as gene scores suffer from dropout noise in single-914 

cell data. For scRNA-seq there have been many imputation methods developed to remedy this 915 

dropout noise. We have found that an effective method for imputation with scATAC-seq data is 916 

with Markov affinity-based graph imputation of cells (MAGIC)38. ArchR implements MAGIC for 917 
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diffusing single-cell features across similar cells to smooth a single-cell matrix while 918 

simultaneously accounting for drop-out biases. MAGIC creates and stores a cell x cell diffusion 919 

matrix of weights that is then used to smooth the feature matrix with matrix multiplication. 920 

However, this diffusion matrix is dense and scales quadratically with the number of cells. To 921 

circumvent this limitation, ArchR creates equally sized blocks of cells (user-defined, default is 922 

10,000) and then computes the partial diffusion matrix for these cells. These partial diffusion 923 

matrices are then combined to create a blocked diffusion matrix. This blocked diffusion matrix 924 

scales linearly in size leading to more memory efficiency but leads to lower resolution diffusion of 925 

data. To increase the resolution of this blocked diffusion matrix ArchR creates multiple replicates 926 

of the diffusion matrix to independently smooth the data matrix and then takes the average of the 927 

resulting smoothed matrices. ArchR additionally stores these blocked diffusion matrix replicates 928 

on-disk in HDF5-formatted files where each block is stored as its own group for direct access to 929 

specific parts of the matrix. ArchR’s MAGIC implementation shifts the memory usage to on-disk 930 

storage and thus enables data diffusion of extremely large datasets (N > 200,000) with minimal 931 

computing requirements. 932 

 933 

ArchR Methods – scATAC and scRNA Alignment 934 

ArchR allows for efficient integration with scRNA-seq data utilizing Seurat’s integration 935 

infrastructure11. When performing this cross-platform alignment across large numbers of cells, we 936 

have found that the required memory and run time increase substantially. Moreover, constraining 937 

this alignment into smaller biologically relevant parts minimizes the alignment space into smaller 938 

alignment “sub-spaces”7. Thus, to increase alignment accuracy and improve runtime 939 

performance, ArchR enables the alignment of scATAC-seq and scRNA-seq to be constrained by 940 

user-defined groups of cells from both datasets that define smaller alignment sub-spaces. Within 941 

these sub-spaces, ArchR splits the scATAC-seq cells into equivalent slices of N cells (user-942 

defined, default is 10,000 cells) and performs alignment with the scRNA-seq cells. This alignment 943 
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procedure begins with the identification of the top variable genes (user-defined, default is 2,000 944 

genes defined from scRNA-seq) using “Seurat::FindVariableFeatures”. Next, ArchR reads in the 945 

cell x gene scores matrix from the Arrow file for these cells. Then, ArchR imputes these gene 946 

scores using MAGIC and stores this imputed gene score matrix into a Seurat object for integration. 947 

ArchR then uses “Seurat::FindTransferAnchors” with canonical correlation analysis (CCA) to align 948 

this sub-space of cells efficiently. Next, ArchR extracts the aligned scRNA-seq cell, group, and 949 

gene expression profile with “Seurat::TransferData”. These gene expression profiles are stored 950 

in the corresponding Arrow files (stored as “GeneIntegrationMatrix”) for downstream analyses. 951 

 952 

ArchR Methods – scRNA Peak-To-Gene Linkage 953 

We have previously used ATAC-seq peak-to-gene linkages to link putative enhancers and GWAS 954 

risk loci to their predicted target genes7,21. ArchR can rapidly compute peak-to-gene links from a 955 

peak matrix and gene expression matrix (see above). These peak-to-gene links can optionally be 956 

visualized using the ArchRBrowser. First, ArchR identifies 500+ low-overlapping cell aggregates 957 

(see Creation of Low-Overlapping Aggregates of Cells for Linkage Analysis).  Second, ArchR 958 

reads in the peak matrix and then creates the cell aggregate x peak matrix. Third, ArchR reads in 959 

the gene expression matrix and then creates the cell aggregate x gene matrix. ArchR then 960 

identifies all possible peak-to-gene combinations within a given window of the gene start (user-961 

defined, default is 250 kb) and then computes the Pearson correlation of the log2-normalized cell 962 

aggregate x peak matrix and cell aggregate x gene matrix across all cell aggregates. ArchR 963 

computes these peak-to-gene links genome-wide and stores them within the ArchRProject, which 964 

can then be accessed for downstream applications. Additionally, ArchR enables users to lower 965 

the resolution of these interactions to better visualize the main interactors (keeping only the 966 

highest correlation value observed in each window).  967 

 968 

ArchR Methods – Cellular Trajectory Analysis 969 
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To order cells in pseudo-time, ArchR creates cellular trajectories that order cells across a lower 970 

N-dimensional subspace within an ArchRProject. Previously, we have performed this ordering in 971 

the 2-dimensional UMAP subspace6 but ArchR has improved upon this methodology to enable 972 

alignment within an N-dimensional subspace (i.e. LSI). First, ArchR requires a user-defined 973 

trajectory backbone that provides a rough ordering of cell groups/clusters. For example, given 974 

user-determined cluster identities, one might provide the cluster IDs for a stem cell cluster, then 975 

a progenitor cell cluster, and then a differentiated cell cluster that correspond to a known or 976 

presumed biologically relevant cellular trajectory (i.e. providing the cluster IDs for HSC, to MPP, 977 

to CMP, to Monocyte). Next, for each cluster, ArchR calculates the mean coordinates for each 978 

cell group/cluster in N-dimensions and retains cells whose Euclidean distance to those mean 979 

coordinates is in the top 5% of all cells. Next, ArchR computes the distance for each cell from 980 

clusteri to the mean coordinates of clusteri+1 along the trajectory and computes a pseudo-time 981 

vector based on these distances for each iteration of i. This allows ArchR to determine an N-982 

dimensional coordinate and a pseudo-time value for each of the cells retained as part of the 983 

trajectory based on the Euclidean distance to the cell group/cluster mean coordinates. Next, 984 

ArchR fits a continuous trajectory to each N-dimensional coordinate based on the pseudo-time 985 

value using the “smooth.spline” function with df = 250 (degrees of freedom) and spar = 1 986 

(smoothing parameter). Then, ArchR aligns all cells to the trajectory based on their Euclidean 987 

distance to the nearest point along the manifold. ArchR then scales this alignment to 100 and 988 

stores this pseudo-time in the ArchRProject for downstream analyses. 989 

 ArchR can create matrices that convey pseudo-time trends across features stored within 990 

the Arrow files. For example, ArchR can analyze changes in TF deviations, gene scores, or 991 

integrated gene expression across pseudo-time to identify regulators or regulatory elements that 992 

are dynamic throughout the cellular trajectory.  First, ArchR groups cells in small user-defined 993 

quantile increments (default = 1/100) across the cellular trajectory. ArchR then smooths this matrix 994 

per feature using a user-defined smoothing window (default = 9/100) using the 995 
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“data.table::frollmean” function. ArchR then returns this smoothed pseudo-time x feature matrix 996 

as a SummarizedExperiment for downstream analyses. ArchR additionally can correlate two of 997 

these smoothed pseudo-time x feature matrices using name matching (i.e. positive regulators 998 

with chromVAR TF deviations and gene score/integration profiles) or by genomic position overlap 999 

methods (i.e. peak-to-gene linkages) using low-overlapping cellular aggregates as described in 1000 

previous sections. Thus, ArchR facilitates integrative analyses across cellular trajectories, 1001 

revealing correlated regulatory dynamics across multi-modal data. 1002 

 1003 

Benchmarking Analysis – Preface 1004 

For benchmarking analyses, we used one of two computational environments: (1) a MacBook Pro 1005 

laptop containing 32 GB of RAM and a 2.3GHz 8-core Intel Core i9 processor (16 threads) with 1006 

data stored on an external USB hard drive; (2) a large-memory node on a high-performance 1007 

cluster with 128 GB of RAM and two 2.40 GHz 10-core Intel Xeon E5-2640 V4 processors (20 1008 

threads). For benchmarking analyses using more limited compute resources (32 GB and 8 cores) 1009 

we used the same large-memory node configuration but limited the available cores and memories 1010 

using Slurm job submission properties. The main difference between the computational 1011 

environment of the MacBook Pro and the server is the ability of each core on the MacBook Pro 1012 

to use 2 threads whereas hyper-threading is disabled on the server and each core is effectively a 1013 

single thread. 1014 

We downloaded scATAC-seq data from previously published and publicly available 1015 

locations. We downloaded the immune cell data fragment files from Satpathy et al. 2019 1016 

(GSE129785), Granja et al. 2019 (GSE139369), and from the 10x Genomics website 1017 

(https://www.10xgenomics.com/solutions/single-cell-atac/). For the mouse sci-ATAC-seq data, 1018 

we downloaded the BAM files from http://atlas.gs.washington.edu/mouse-atac/. No additional 1019 

steps were used prior to benchmarking analysis. We chose to focus our benchmarking tests 1020 

versus Signac and SnapATAC based on the performance of LSI and LDM shown previously9. We 1021 
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ran all analyses in triplicate using snakemake via a slurm job submission engine on a high-1022 

performance cluster to accurately limit the available memory and cores. In the case of job failure, 1023 

we allowed for multiple job attempts to ensure that analyses were reproducible. After each failed 1024 

job attempt, the number of parallel threads for each software was lowered to attempt to complete 1025 

the analysis without exceeding the available memory. Unless otherwise stated all analyses were 1026 

run with default parameters for scATAC-seq benchmarking. We provide R markdown html files 1027 

on our publication page https://github.com/GreenleafLab/ArchR_2020 detailing the exact 1028 

procedures used for all benchmarking analyses. 1029 

 1030 

Benchmarking Analysis – Signac 1031 

Signac (https://github.com/timoast/signac) requires a predetermined peak set, thus we 1032 

downloaded the previously published bulk hematopoiesis peak set from Corces et al. 1033 

(ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE74nnn/GSE74912/suppl/GSE74912_ATACseq_All_Co1034 

unts.txt.gz) for all analyses. We first determined which cellular barcodes had more than 1,000 1035 

fragments by using “data.table::fread”. For each individual sample, we created a cell x peak matrix 1036 

with the “FeatureMatrix” function using the fragment files and abundant cell barcodes as input. 1037 

Then, we created a Seurat object from this cell x peak matrix with “CreateSeuratObject”. We then 1038 

determined TSS enrichment scores for each cell across the first 3 chromosomes with the 1039 

“TSSEnrichment” function. Default behavior for the TSSEnrichment function uses the first 2,000 1040 

TSSs; however, we increased this number (to include all TSSs on chr1-3) in order to stabilize the 1041 

TSS enrichment scores for more consistent high-quality cell determination while still minimizing 1042 

the run time. We then kept cells with a TSS enrichment score greater than 2 as high-quality cells 1043 

passing filter. This TSS score cutoff differs from that of ArchR due to differences in the formula 1044 

used for calculating TSS enrichment scores and differences in the gene annotation reference 1045 

used by Signac. We then merged these individual Seurat objects (corresponding to each sample) 1046 

and then performed TF-IDF normalization with “RunTFIDF” and “RunSVD” for LSI dimensionality 1047 
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reduction. We used the top 25% of features (ranked by accessibility) for LSI to reduce memory 1048 

usage. The first 30 components were used by default for downstream analyses. Clusters were 1049 

identified using “FindClusters” with default parameters. The scATAC-seq embeddings were 1050 

determined using “RunUMAP” for UMAP and “RunTSNE” for tSNE respectively. Lastly, the gene 1051 

score matrix was created using “FeatureMatrix” on the gene start and end coordinates (provided 1052 

from ArchR) extended upstream by 2 kb for each sample and combined afterwards followed by 1053 

log-normalization.  1054 

 1055 

Benchmarking Analysis - SnapATAC 1056 

SnapATAC (https://github.com/r3fang/SnapATAC) requires additional preprocessing steps prior 1057 

to creation of a Snap file that can be used for downstream analyses. First, fragment files were 1058 

sorted by their cell barcode with Unix “sort”. Next, these sorted fragment files were converted to 1059 

Snap files by using SnapTools “snap-pre” with parameters “--min-mapq=30 --min-flen=50 --max-1060 

flen=1000 --keep-chrm=FALSE --keep-single=FALSE --keep-secondary=FALSE --1061 

overwrite=TRUE --min-cov=1000 --max-num=20000 --verbose=TRUE” as described on the 1062 

GitHub page. A genome-wide tile/bin matrix was then added using “snap-add-bmat” with 1063 

parameters “--bin-size-list 5000” for a 5-kb matrix. To identify high-quality cells, SnapATAC 1064 

computes a promoter ratio score for the fraction of accessible fragments that overlap promoter 1065 

regions. We read in the 5-kb bin matrix into a Snap object using “addBmatToSnap” and then 1066 

created a promoter Genomic Ranges object from the provided transcript annotation file 1067 

(http://renlab.sdsc.edu/r3fang/share/github/reference/hg19/gencode.v30.annotation.gtf.gz) and 1068 

then extending the gene start upstream by 2 kb. Next, we overlapped these regions using 1069 

“findOverlaps” and then computed the summed accessibility within these overlapping regions vs 1070 

the total accessibility across all 5-kb bins. We chose a cutoff for promoter ratio as 0.175 by 1071 

manually inspecting the benchmarking dataset total accessibility vs promoter ratio plot as 1072 

described in the GitHub. These high-quality cells were kept for downstream analyses. For 1073 
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dimensionality reduction, we first filtered bins that were greater than the 95th percentile of non-1074 

zero bins. Next, we ran “runDiffusionMaps” with 30 eigenvectors to be computed (similar in the 1075 

benchmarking analysis of all 3 methods). Clustering was performed with “runKNN” with the first 1076 

20 eigenvectors for a k-nn nearest neighbor search followed by “runCluster” with louvain.lib = “R-1077 

igraph”. The scATAC-seq embeddings were determined using “runViz” with method = “umap” for 1078 

UMAP and method = “Rtsne” for tSNE for the top 20 eigenvectors. Lastly, the gene score matrix 1079 

was determined by using the gene start and end coordinates (provided from ArchR) as input to 1080 

“createGmatFromMat” with the input.mat = “bmat” and scaled with “scaleCountMatrix”. For 1081 

comparing estimated dimensionality reduction in SnapATAC (estimated LDM) to estimated LSI in 1082 

ArchR, we first sampled N cells (10,000 or the number of cells specified) based on the inverse of 1083 

their coverage and then computed diffusion maps with “runDiffusionMaps”. The remaining cells 1084 

were projected with “runDiffusionMapsExtension” and the two Snap objects were combined for 1085 

downstream analysis. 1086 

 1087 

Benchmarking Analysis - ArchR 1088 

For analysis with ArchR, we first converted input scATAC-seq data (fragment files or BAM files) 1089 

to Arrow files with “createArrowFiles” with minFrags = 1000, filterTSS = 4, and addGeneScoreMat 1090 

= FALSE (addGeneScoreMat was set to false to allow for downstream benchmarking of this 1091 

individual step). These Arrow files were then used to create an ArchRProject with the appropriate 1092 

genome annotation. We identified doublet scores for each sample with “addDoubletScores” and 1093 

“filterDoublets” respectively; however, time and memory used for doublet identification were not 1094 

included in the benchmarking results because this step is unique to ArchR and would complicate 1095 

direct comparisons to other software. We then computed the iterative LSI dimensionality reduction 1096 

with “addIterativeLSI” with default parameters (variableFeatures = 25,000 and iterations = 2). 1097 

Clusters were identified using “addClusters” with default parameters. The scATAC-seq 1098 

embeddings were determined using “addUMAP” for UMAP and “addTSNE” for tSNE. Lastly, the 1099 
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gene score matrix was added by “addGeneScoreMatrix” which stores the depth-normalized cell 1100 

x gene matrix. For comparison of estimated LSI in ArchR to estimated LDM in SnapATAC, 1101 

“addIterativeLSI” was run with an additional parameter for sampling (sampleCellsFinal = 10,000 1102 

or the number of cells specified). 1103 

 1104 

ArchR Analysis – Comparison of Gene Score Methods 1105 

We used ArchR to benchmark 53 models of inferring gene scores to emulate gene expression. 1106 

All models were tested with the same gene annotation reference for direct comparison. We 1107 

additionally used Signac, SnapATAC, and co-accessibility to create gene score models for 1108 

comparison, making a total of 56 models. We used two datasets for evaluation: (1) ~30,000 1109 

PBMCs and (2) ~30,000 bone marrow cells. We first created the gene score models that 1110 

incorporated distance by systematically changing the input parameters for 1111 

“addGeneScoreMatrix”. This parameter sweep included TSS exponential decay functions 1112 

(useTSS = TRUE) and gene body exponential decay functions (useTSS = FALSE). We tried other 1113 

decay functions but saw no appreciable difference so we used exponential decay (this is a user-1114 

input so any model as a function of relative distance may be inserted). For gene score models 1115 

that were overlap-based (no distance function), we used “addFeatureMatrix” based on a set of 1116 

genomic regions corresponding to either an extended gene promoter [resize(genes, 1, “start”) 1117 

followed by resize(2*window + 1, “center”)]  or an extended gene body [extendGR(genes, 1118 

upstream, downstream)]. For each model, we created a genome-wide gene score matrix and 1119 

extracted these matrices from the Arrow files using “getMatrixFromProject”. We next created 500 1120 

low-overlapping random groupings of 100 cells with ArchR (see above) and took the average 1121 

gene scores for each of these groupings. Next, we collected the gene scores calculated by Signac 1122 

and SnapATAC during our benchmarking tests and averaged the gene scores across the same 1123 

groupings. For co-accessibility, we created gene scores as previously described with Cicero6,7,18.  1124 

We first used Cicero to create 5,000 lowly-overlapping cell groupings of 50 cells with “cicero_cds”. 1125 
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Next, we calculated the average accessibility for these groupings across all peaks (with 1126 

getMatrixFromProject). We correlated all peaks within 250 kb to get peak co-accessibility. We 1127 

annotated the peaks as promoter if within 2.5 kb from the gene start with “annotate_cds_by_site”. 1128 

Finally, gene scores for the co-accessibility model were identified with 1129 

“build_gene_activity_matrix” with a co-accessibility cutoff of 0.35 followed by 1130 

“normalize_gene_activities”. For this co-accessibility model, we tested various parameters such 1131 

as promoter window size, correlation cutoff, and peak-to-peak distance maximums to make sure 1132 

the results were reproducible. 1133 

 Having a cell aggregate x gene score matrix for all 56 models, we next created a gene 1134 

expression matrix to test these models. We integrated our scATAC-seq (from ArchR’s results) 1135 

with previously annotated scRNA-seq datasets (10k PBMC from 10x website and Bone Marrow 1136 

from Granja et al., 2019) using “Seurat::FindTransferAnchors” and “Seurat::TransferData” with 1137 

the top 2,000 variable genes from scRNA-seq. This integration was performed for each scATAC-1138 

seq sample independently and the scRNA-seq data used for each bone marrow alignment was 1139 

constrained to match cell sources together (i.e. BMMC scATAC-seq with BMMC scRNA-seq and 1140 

CD34+ scATAC-seq with CD34+ scRNA-seq)7. From this integration, each scATAC-seq cell was 1141 

paired to a matched gene expression profile. We averaged the gene expression profiles for each 1142 

of the 500 lowly-overlapping groups (see above) to create a cell aggregate x gene expression 1143 

matrix. 1144 

 To benchmark the performance for each gene score model, we identified 2 gene sets:  the 1145 

top 2,000 variable genes defined by “Seurat::FindVariableGenes” and the top 1,000 differentially 1146 

expressed genes defined by “Seurat::FindAllMarkers” (ranking the top N genes for each scRNA-1147 

seq cluster until 1,000 genes were identified). For these gene sets, we calculated the gene-wise 1148 

correlation (how well do the gene score and gene expression correlate across all genes) and the 1149 

aggregate-wise correlation (how well do the gene score and gene expression correlate across all 1150 
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cell aggregates). These 4 measures were then ranked across all models, and the average ranking 1151 

was used to score the 56 models.  1152 

 To orthogonally support this result, we downloaded previously published paired bulk 1153 

ATAC-seq + RNA-seq for hematopoiesis19. We then iteratively down-sampled the reads from 1154 

each dataset to create 100 pseudo-cells with 10,000 fragments from each bulk ATAC-seq sample. 1155 

We then created a scATAC-seq fragments file for each pseudo-cell. We performed an identical 1156 

analysis as described above for the 53 ArchR gene score models. For comparing these 53 1157 

models, we used 2 gene sets: the top 2,000 variable genes defined by log2-normalized 1158 

expression-ranked variance across each cell type and the top 1,000 marker genes defined by the 1159 

top log2(fold change) for each cell type vs the average expression of all cell types. We similarly 1160 

ranked the gene-wise and aggregate-wise correlation across all models, and used the average 1161 

ranking to score each model.  1162 

 1163 

ArchR Analysis – Large Simulated PBMC ~1.2M Cells 1164 

To further test ArchR’s capability to analyze extremely large datasets (N > 200,000), we simulated 1165 

~1.3M single cells contained within 200 fragment files. We used 4 PBMC samples (2 x 5,000 cells 1166 

and 2 x 10,000 cells from 10x Genomics) for creating this large dataset. We randomly shifted 1167 

each scATAC-seq fragment with a mean difference of +/- 50-100 bp (randomly sampled) and a 1168 

standard deviation of +/- 10-20 bp (randomly sampled). We then sampled the fragments by 80% 1169 

to ensure some differences between simulated cells and then saved these to bg-zipped fragment 1170 

files. We then used ArchR to convert these fragment files to Arrow files with “createArrowFiles” 1171 

with minFrags = 1000, filterTSS = 4 and addGeneScoreMat = TRUE. These Arrow files were then 1172 

assembled into an ArchRProject. We identified doublet scores for each simulated dataset with 1173 

“addDoubletScores” and “filterDoublets” respectively, retaining ~1.2 million cells after doublet 1174 

removal. We then computed the estimated iterative LSI dimensionality reduction with 1175 

“addIterativeLSI” (variableFeatures = 25,000, sampleCellsFinal = 25,000 and 2 iterations). 1176 
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Estimated clusters were identified using “addClusters” with sampleCells = 50,000. This estimation 1177 

method uses a subset of cells to cluster and then the remaining cells are annotated by their 1178 

nearest neighbors (the maximum annotation observed). An estimated scATAC-seq UMAP was 1179 

created using “addUMAP” with sampleCells = 100,000. This estimation method uses a subset of 1180 

cells to create a UMAP embedding and then the remaining cells are projected into the single-cell 1181 

embedding using “umap::umap_transform”. 1182 

 1183 

ArchR Analysis – Large Hematopoiesis 220K Cells 1184 

We wanted to test ArchR’s full analysis suite with a large dataset (N > 200,000) comprised of 1185 

previously published immune cell data6,7. We additionally grouped all Fluidigm C1-based scATAC-1186 

seq data from Buenrostro et al. 20184 into a fragment file. This amounted to a total of 49 scATAC-1187 

seq fragment files corresponding to over 200,000 cells. We first used ArchR to convert these 1188 

fragment files to Arrow files using “createArrowFiles” with minFrags = 1000, filterTSS = 8 and 1189 

addGeneScoreMat = TRUE. These Arrow files are then used to create an ArchRProject. We 1190 

identified doublet scores for each simulated dataset with “addDoubletScores” and “filterDoublets” 1191 

respectively. We then computed the estimated iterative LSI dimensionality reduction with 1192 

“addIterativeLSI” (variableFeatures = 25,000, sampleCellsFinal = 25,000 and iterations = 2). A 1193 

scATAC-seq UMAP was then created by using “addUMAP” with minDist = 1 and nNeighbors = 1194 

40. Clusters were initially identified using “addClusters” with default parameters. We re-clustered 1195 

the early progenitor cells (clusters containing CD34+ cells) with a clustering resolution of 0.4 to 1196 

better resolve these cell clusters. We added MAGIC imputation weights with 1197 

“addImputationWeights” for imputing single-cell features that are then overlaid on the UMAP 1198 

embedding. We then manually merged and assigned clusters that correspond to cell types based 1199 

on known marker gene scores and observation of sequencing tracks using the ArchRBrowser.  1200 

 To identify a union peak set, we created group coverage files, which contain the 1201 

aggregated accessibility of groups of single cells within a cluster, with “addGroupCoverages”. We 1202 
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then created a reproducible peak set with “addReproduciblePeakSet” and a cell x peak matrix 1203 

with “addPeakMatrix”. Next, we determined background peaks that are matched in GC-content 1204 

and accessibility with “addBgdPeak”. For downstream motif-based analyses we added motif 1205 

overlap annotations with “addMotifAnnotations” for CIS-BP version 1 motifs (version = 1). We 1206 

computed a ChromVAR deviations matrix with “addDeviationsMatrix”. We next identified positive 1207 

TF regulators with “correlateMatrices” where useMatrix1 = “MotifMatrix” and useMatrix2 = 1208 

“GeneScoreMatrix”. To identify which of these correlated TF regulators had strong differential 1209 

motif activity differences we calculated the average motif deviation scores with “exportGroupSE” 1210 

for each cluster and computed the max observed deviation difference between any two clusters. 1211 

This motif difference and the TF-to-gene score correlation were then used to identify positive 1212 

regulators (correlation > 0.5 and a maximum deviation score difference > 50th percentile). 1213 

Differential accessibility for each cluster was determined using “markerFeatures” with maxCells = 1214 

1000 and useMatrix = “PeakMatrix”. Marker peaks were defined as peaks with a log2(Fold 1215 

Change) > 1.5 and an FDR < 0.01 (Wilcoxon-test with presto, 1216 

https://github.com/immunogenomics/presto/). We then determined enriched motifs with 1217 

“peakAnnoEnrichment” in these marker peaks and plotted the motif enrichment p-values for the 1218 

positive TF regulators. ArchR has a curated set of previously published bulk ATAC-seq datasets 1219 

that we used for feature overlap enrichment by computing overlaps with “addArchRAnnotations” 1220 

(collection = “ATAC”) and “peakAnnoEnrichment”. TF footprints, with Tn5-bias correction, were 1221 

calculated by “plotFootprints” with motif positions from “getPositions” and normMethod = subtract. 1222 

Bulk hematopoietic ATAC-seq (GSE74912) was projected into the scATAC-seq subspace using 1223 

“projectBulkATAC” with N = 250 cells. Peak co-accessibility was computed with 1224 

“addCoAccessibility” and accessibility tracks were created with the ArchRBrowser. 1225 

 We next wanted to integrate our scATAC-seq data with previously published 1226 

hematopoietic scRNA-seq data7. To do this analysis, we used “addGeneIntegrationMatrix” with 1227 

sampleCellsATAC = 10,000, sampleCellsRNA = 10,000, and a groupList specifying to group cells 1228 
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from T/NK clusters and cells from non-T/NK clusters for both scATAC-seq and scRNA-seq prior 1229 

to alignment. This constrained integration improved the alignment accuracy and added a matched 1230 

gene expression profile for each scATAC-seq cell. We overlaid these gene expression profiles on 1231 

the UMAP embedding with “plotEmbedding”. After this integration analysis, we identified peak-to-1232 

gene links with “addPeak2GeneLinks” and visualized them with “peak2GeneHeatmap”. 1233 

 To create a cellular trajectory across B cell differentiation, we used “addTrajectory” with 1234 

preFilterQuantile = 0.8, useAll = FALSE, and an initial trajectory of “HSC -> CMP.LMPP -> CLP.1 1235 

-> CLP.2 -> PreB -> B”. We next created trajectory matrices for “MotifMatrix”, “GeneScoreMatrix”, 1236 

“GeneIntegrationMatrix” and “PeakMatrix”. We correlated the deviation score and gene score 1237 

trajectory matrices with “correlateTrajectories”. Additionally, we correlated the deviation score and 1238 

gene expression trajectory matrices with “correlateTrajectories”. We kept TFs whose correlation 1239 

was 0.5 or greater for both of the correlation analyses. We determined these TFs as positive TF 1240 

regulators across the B cell trajectory. We also used ArchR to identify peak-to-gene links across 1241 

the B cell trajectory with “correlateTrajectories” with useRanges = TRUE, varCutOff1 = 0.9, and 1242 

varCutOff2 = 0.9. Lastly, we grouped cells into 5 groups of cells based on pseudo-time across the 1243 

B cell trajectory for track visualization (with the ArchRBrowser) and TF footprinting of the TF 1244 

regulators.  1245 

 1246 

 1247 

 1248 

 1249 

 1250 

 1251 

 1252 

 1253 

 1254 
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Figure Legends 1385 

 1386 

Figure 1. ArchR: A rapid, extensible, and comprehensive scATAC-seq analysis platform. 1387 

a. Schematic of the ArchR workflow from input of pre-aligned scATAC-seq data as BAM or 1388 

fragment files to diverse data analysis.  1389 

b-c. Comparison of run time and memory usage by ArchR, Signac, and SnapATAC for the 1390 

analysis of (b) ~20,000 PBMC cells using 32 GB RAM and 8 cores or (c) ~70,000 PBMC cells 1391 

using 128 GB RAM and 20 cores. Dots represent individual replicates of benchmarking analysis. 1392 

d. Initial UMAP embedding of scATAC-seq data from 2 replicates of the cell line mixing experiment 1393 

(N = 38,072 total cells from 10 different cell lines) colored by replicate number. 1394 

e. Schematic of doublet identification with ArchR.  1395 

f-g. Initial UMAP embedding of scATAC-seq data from 2 replicates of the cell line mixing 1396 

experiment (N = 38,072 total cells from 10 different cell lines) colored by (f) the enrichment of 1397 

projected synthetic doublets or (g) the demuxlet identification labels based on genotype 1398 

identification using SNPs within accessible chromatin sites. 1399 

h. Receiver operating characteristic (ROC) curves of doublet prediction using synthetic doublet 1400 

projection enrichment or the number of nuclear fragments per cell compared to demuxlet as a 1401 

ground truth. The area under the curve (AUC) for these ROC curves are annotated below. 1402 

i. UMAP after ArchR doublet removal of scATAC-seq data from 2 replicates of the cell line mixing 1403 

experiment (N = 27,220 doublet-filtered cells from 10 different cell lines) colored by demuxlet 1404 

identification labels based on genotype identification using SNPs within accessible chromatin 1405 

sites. 1406 

 1407 

Figure 2. Optimized gene score inference models provide improved prediction of gene 1408 

expression from scATAC-seq data. 1409 
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a. UMAPs of scATAC-seq data from (top) PBMCs and (bottom) bone marrow cells colored by 1410 

aligned scRNA-seq clusters. This alignment is used for benchmarking all downstream scATAC-1411 

seq gene score models. 1412 

b. Heatmaps summarizing the accuracy (measured by Pearson correlation) across 56 gene score 1413 

models for both the top 1,000 differentially expressed and top 2,000 variable genes for both PBMC 1414 

and bone marrow cell datasets. Each heatmap entry is colored by the model rank in the given 1415 

correlation test as described below the heatmap. The model class is indicated to the left of each 1416 

heatmap by color. SA, SnapATAC; SN, Signac; CoA, Co-accessibility. 1417 

c. Illustration of the gene score Model 42, which uses bi-directional exponential decays from the 1418 

gene TSS (extended upstream by 5 kb) and the gene transcription termination site (TTS) while 1419 

accounting for neighboring gene boundaries (see methods). This model was shown to be more 1420 

accurate than other models such as Model 21 which models an exponential decay from the gene 1421 

TSS. 1422 

d. Side-by-side UMAPs for PBMCs and bone marrow cells colored by (left) gene scores from 1423 

Model 42 and (right) gene expression from scRNA-seq alignment for key immune cell-related 1424 

marker genes. 1425 

e-f. Heatmaps of (top) gene expression or (bottom) gene scores for the top 1,000 differentially 1426 

expressed genes (selected from scRNA-seq) across all cell aggregates for (e) PBMCs or (f) bone 1427 

marrow cells. Color bars to the left of each heatmap represent the PBMC or bone marrow cell 1428 

cluster derived from scRNA-seq data. 1429 

 1430 

Figure 3. ArchR enables comprehensive analysis of massive-scale scATAC-seq data. 1431 

a. Run times for ArchR-based analysis of over 220,000 and 1,200,000 single cells respectively 1432 

using a small cluster-based computational environment (32 GB RAM and 8 cores with HP Lustre 1433 

storage) and a personal MacBook Pro laptop (32 GB RAM and 8 cores with an external USB hard 1434 

drive). Color indicates the relevant analytical step. 1435 
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b. UMAP of the hematopoiesis dataset colored by the 21 hematopoietic clusters. UMAP was 1436 

constructed using LSI estimation with 25,000 landmark cells. 1437 

c. Heatmap of 215,916 ATAC-seq marker peaks across all hematopoietic clusters identified with 1438 

bias-matched differential testing. Color indicates the column Z-score of normalized accessibility. 1439 

d. Heatmap of motif hypergeometric enrichment adjusted p-values within the marker peaks of 1440 

each hematopoietic cluster. Color indicates the motif enrichment (-log10(p-value)) based on the 1441 

hypergeometric test. 1442 

e. Side-by-side UMAPs of (left) gene scores and (right) motif deviation scores for ArchR-identified 1443 

TFs where the inferred gene expression is positively correlated with the chromVAR TF deviation 1444 

across hematopoiesis. 1445 

f-h. Tn5 bias-adjusted transcription factor footprints for GATA, SPI1, and EOMES motifs, 1446 

representing positive TF regulators of hematopoiesis. Lines are colored by the 21 clusters shown 1447 

in Figure 3c. 1448 

i. Genome accessibility track visualization of marker genes with peak co-accessibility. (Left) CD34 1449 

genome track (chr1:208,034,682-208,134,683) showing greater accessibility in earlier 1450 

hematopoietic clusters (1-5, 7-8 and 12-13). (Right) CD14 genome track (chr5:139,963,285-1451 

140,023,286) showing greater accessibility in earlier monocytic clusters (13-15). 1452 

 1453 

Figure 4. Integration of scATAC-seq and scRNA-seq data by ArchR identifies gene 1454 

regulatory trajectories of hematopoietic differentiation. 1455 

a. Schematic of scATAC-seq alignment with scRNA-seq data in M slices of N single cells. These 1456 

slices are independently aligned to a reference scRNA-seq dataset and then the results are 1457 

combined for downstream analysis. This integrative design facilitates rapid large-scale integration 1458 

with low-memory requirements. 1459 

b-d. UMAP of scATAC-seq data from the hematopoiesis dataset colored by (b) alignment to 1460 

previously published hematopoietic scRNA-seq-derived clusters, (c) integrated scRNA-seq gene 1461 
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expression for key marker TFs and genes, or (d) cell alignment to the ArchR-defined B cell 1462 

trajectory. In (d), the smoothed arrow represents a visualization of the interpreted trajectory 1463 

(determined in the LSI subspace) in the UMAP embedding. 1464 

e. Heatmap of 11,999 peak-to-gene links identified across the B cell trajectory with ArchR. 1465 

f-g. Genome track visualization of the (f) HMGA1 locus (chr6:34,179,577-34,249,577) and (g) 1466 

BLK locus (chr8:11,301,521-11,451,521). Single-cell gene expression across pseudo-time in the 1467 

B cell trajectory is shown to the right.  Inferred peak-to-gene links for distal regulatory elements 1468 

across the hematopoiesis dataset is shown below. 1469 

h. Heatmap of positive TF regulators whose gene expression is positively correlated with 1470 

chromVAR TF deviation across the B cell trajectory. 1471 

i-k. Tn5 bias-adjusted transcription factor footprints for (i) NFE2, (j) EBF1, and (k) IRF8 motifs, 1472 

representing positive TF regulators across the B cell trajectory. Lines are colored by the position 1473 

in pseudo-time of B cell differentiation. 1474 

 1475 

Supplementary Figure Legends 1476 

 1477 

Supplementary Fig. 1. ArchR infrastructure and supported analyses. 1478 

a. Comparison of supported scATAC-seq analysis features across ArchR, Signac and 1479 

SnapATAC. 1480 

b. (Left) Schematic of the ArchR Arrow file format where accessible reads and arrays are 1481 

organized within. Arrow files can then be used as input for an ArchRProject (Right). The 1482 

ArchRProject stores the locations of these Arrow files and extracts their cell-centric metadata. All 1483 

analysis with ArchR operates through this ArchRProject which can readily access data from Arrow 1484 

files stored on disk. 1485 
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c. Schematic demonstrating how ArchR operations that involve using Arrow fragments (i.e. 1486 

addTileMatrix) operate on each chromosome independently in parallel for many Arrow files and 1487 

then add the resulting matrix back to the corresponding Arrow files again in parallel. 1488 

d. Schematic demonstrating how ArchR operations that use Arrow matrices (i.e. addIterativeLSI) 1489 

access a subset of each chromosome’s matrix from each Arrow file in parallel that are then 1490 

merged to create a filtered matrix for subsequent analysis. 1491 

 1492 

Supplementary Fig. 2. 1493 

a-b. File sizes of storage formats (for both accessible fragments and counts matrix) for ArchR and 1494 

SnapATAC compared to (a) the total number of cells they represent or (b) the total number of 1495 

fragments corresponding to the cells represented in each file. Line colors represent the different 1496 

software used or the original fragment files. 1497 

c. QC filtering plots for the PBMCs dataset from (left) ArchR, showing the TSS enrichment score 1498 

vs unique nuclear fragments per cell, or (right) SnapATAC, showing the promoter ratio / fraction 1499 

of reads in promoters (FIP) vs unique nuclear fragments per cell. Dot color represents the density 1500 

in arbitrary units of points in the plot. 1501 

d-e. Aggregate (d) TSS insertion profiles centered at all TSS regions or (e) fragment size 1502 

distributions for the cells passing ArchR QC thresholds for each sample in the PBMCs dataset. 1503 

Line color represents the sample from the dataset as indicated below the plot. 1504 

f. QC filtering plots for the bone marrow cell dataset from (left) ArchR, showing the TSS 1505 

enrichment score vs unique nuclear fragments per cell, or (right) SnapATAC, showing the 1506 

promoter ratio / fraction of reads in promoters (FIP) vs unique nuclear fragments per cell. Dot 1507 

color represents the density in arbitrary units of points in the plot.  1508 

g-h. Aggregate (g) TSS insertion profiles centered at all TSS regions or (h) fragment size 1509 

distributions for the cells passing ArchR QC thresholds for each sample in the bone marrow cell 1510 

dataset. Line color represents the sample from the dataset as indicated below the plot. 1511 
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i. QC filtering plots from ArchR for each individual organ type from the mouse atlas dataset 1512 

showing the TSS enrichment score vs unique nuclear fragments per cell. Dot color represents the 1513 

density in arbitrary units of points in the plot. 1514 

j-k. Aggregate (j) TSS insertion profiles centered at all TSS regions or (k) fragment size 1515 

distributions for the cells passing ArchR QC thresholds for each sample in the mouse atlas 1516 

dataset. Line colors represent different samples as indicated to the left of the plot. 1517 

 1518 

Supplementary Fig. 3. 1519 

a. Schematic describing the individual benchmarking steps compared across ArchR, Signac, and 1520 

SnapATAC for (1) Data Import, (2) Dimensionality Reduction and Clustering, and (3) Gene Score 1521 

Matrix Creation. 1522 

b-i. Comparison of ArchR, Signac, and SnapATAC for run time and peak memory usage for the 1523 

analysis of (b) ~20,000 cells from the PBMCs dataset using 128 GB of RAM and 20 cores (plot 1524 

corresponds to Figure 1b), (c) ~70,000 cells from the PBMCs dataset using 32 GB of RAM and 1525 

8 cores (plot corresponds to Figure 1c), (d-e) ~10,000 cells from the PBMCs dataset using (d) 1526 

32 GB of RAM and 8 cores or (e) 128 GB of RAM and 20 cores, (f-g) ~30,000 cells from the 1527 

PBMCs dataset using (f) 32 GB of RAM and 8 cores or (g) 128 GB of RAM and 20 cores, and (h-1528 

i) ~30,000 cells from the bone marrow dataset using (h) 32 GB of RAM and 8 cores or (i) 128 GB 1529 

of RAM and 20 cores. Dots represent individual replicates of benchmarking analysis. 1530 

j. Benchmarks from ArchR for run time and peak memory usage for the analysis of ~70,000 cells 1531 

from the sci-ATAC-seq mouse atlas dataset for (left) 32 GB of RAM with 8 cores and (right) 128 1532 

GB of RAM with 20 cores. Dots represent individual replicates of benchmarking analysis. 1533 

k. t-SNE of mouse atlas scATAC-seq data (N = 64,286 cells) colored by individual samples. 1534 

 1535 

Supplementary Fig. 4. 1536 
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a. QC filtering plots from ArchR for (top) replicate 1 and (bottom) replicate 2 from the cell line 1537 

mixing dataset showing the TSS enrichment score vs unique nuclear fragments per cell. Dot color 1538 

represents the density in arbitrary units of points in the plot. 1539 

b. Accuracy of various doublet prediction methods for (top) replicate 1 and (bottom) replicate 2 1540 

from the cell line mixing dataset, measured by the area under the curve (AUC) of the receiver 1541 

operating characteristic (ROC), across different in silico cell loadings. Accuracy is determined with 1542 

respect to genotype-based identification of doublets using demuxlet. Above each plot, “KNN” 1543 

represents the number of cells nearby each projected synthetic doublet to record when calculating 1544 

doublet enrichment scores. The distance for KNN recording is determined in the LSI subspace 1545 

for LSI projection and in the UMAP embedding for UMAP projection parameters. 1546 

c-h. UMAP of scATAC-seq data showing the (c-d) simulated doublet density, (e-f) simulated 1547 

doublet enrichment, or (g-h) cell line identity based on genotyping information and demuxlet for 1548 

(c,e,g) replicate 1 (N = 15,345 cells) and (d,f,h) replicate 2 (N = 22,727 cells) of the cell line mixing 1549 

dataset. 1550 

 1551 

Supplementary Fig. 5. 1552 

a. Schematic of the iterative LSI procedure implemented in ArchR for dimensionality reduction. 1553 

b. UMAPs of scATAC-seq data from ~30,000 cells from the PBMCs dataset to compare clustering 1554 

results across ArchR with doublet removal, ArchR without doublet removal, Signac, SnapATAC, 1555 

and SnapATAC with estimated LDM. Each UMAP is colored by (left) sample, (middle) clusters as 1556 

defined by ArchR with doublet removal, and (right) the number of unique nuclear fragments. 1557 

 1558 

Supplementary Fig. 6. 1559 

a. UMAPs of scATAC-seq data from ~30,000 cells from the bone marrow dataset to compare 1560 

clustering results across ArchR with doublet removal, ArchR without doublet removal, Signac, 1561 

SnapATAC, and SnapATAC with estimated LDM. Each UMAP is colored by (left) sample, (middle) 1562 
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clusters as defined by ArchR with doublet removal, and (right) the number of unique nuclear 1563 

fragments. 1564 

 1565 

Supplementary Fig. 7. 1566 

a. Schematic of the estimated LSI framework implemented by ArchR. Briefly, a subset of cells, 1567 

referred to as “landmark” cells, are used for LSI dimensionality reduction. The remaining cells are 1568 

then linearly projected with LSI projection into this landmark-defined LSI subspace. This method 1569 

enables massive-scale analysis of scATAC-seq data with ArchR. 1570 

b. UMAPs of scATAC-seq data from ~30,000 cells from the PBMCs dataset showing the results 1571 

of dimensionality reduction from (left) estimated LSI with ArchR after doublet removal or (right) 1572 

estimated LDM with SnapATAC. For each analytical case, a range of cell numbers is used for the 1573 

landmark cell subset (top to bottom). Within each analytical case, two UMAPs are presented, 1574 

colored by the clusters identified without estimation from (left) ArchR or (right) SnapATAC. 1575 

 1576 

Supplementary Fig. 8. 1577 

a. UMAPs of scATAC-seq data from ~30,000 cells from the bone marrow cell dataset showing 1578 

the results of dimensionality reduction from (left) estimated LSI with ArchR after doublet removal 1579 

or (right) estimated LDM with SnapATAC. For each analytical case, a range of cell numbers is 1580 

used for the landmark cell subset (top to bottom). Within each analytical case, two UMAPs are 1581 

presented, colored by the clusters identified without estimation from (left) ArchR or (right) 1582 

SnapATAC. 1583 

b. Comparison of clustering fidelity based on adjusted Rand index in ArchR by estimated LSI or 1584 

in SnapATAC by estimated LDM across multiple landmark subset sizes. 1585 

c. Benchmarking of run time for ArchR estimated LSI and SnapATAC estimated LDM for ~30,000 1586 

cells from (left) the PBMCs dataset and (right) the bone marrow cell dataset for (top) 128 GB of 1587 

RAM with 20 cores and (bottom) 32 GB of RAM with 8 cores. 1588 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 29, 2020. . https://doi.org/10.1101/2020.04.28.066498doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.066498
http://creativecommons.org/licenses/by-nc-nd/4.0/


 62 

 1589 

Supplementary Fig. 9. 1590 

a-h. Distribution of Pearson correlations of inferred gene score and aligned gene expression for 1591 

(a,c,e,g) each gene or (b,d,f,h) each cell group across groups of 100 cells (N = 500 groups). 1592 

Distributions are either presented for (a,b,e,f) the top 1,000 differentially expressed genes or 1593 

(c,d,g,h) the top 2,000 most variable genes for each of the 56 gene score models tested. In each 1594 

plot, the red dotted line represents the median value of the best-performing model. Violin plots 1595 

represent the smoothed density of the distribution of the data. In box plots, the lower whisker is 1596 

the lowest value greater than the 25% quantile minus 1.5 times the interquartile range, the lower 1597 

hinge is the 25% quantile, the middle is the median, the upper hinge is the 75% quantile and the 1598 

upper whisker is the largest value less than the 75% quantile plus 1.5 times the interquartile range. 1599 

SA, SnapATAC; SN, Signac; CoA, Co-accessibility. 1600 

i-j. UMAPs of scATAC-seq data from (i) cells from the PBMCs dataset (N = 27,845 cells) or (j) 1601 

cells from the bone marrow cell dataset (N = 26,748 cells) colored by (top) inferred gene scores 1602 

or (bottom) gene expression for several marker genes. 1603 

k. Schematic illustrating the methodology used to assess the accuracy of inferred gene scores 1604 

based on orthogonal matched bulk ATAC-seq and bulk RNA-seq data of various sorted 1605 

hematopoietic cell types. 1606 

l. Heatmaps summarizing the accuracy (measured by Pearson correlation) across 56 gene score 1607 

models for both the top 1,000 differentially expressed and top 2,000 variable genes for bulk ATAC-1608 

seq and RNA-seq data from sorted hematopoietic cell types. Each heatmap entry is colored by 1609 

the model rank in the given correlation test as described below the heatmap. The model class is 1610 

indicated to the left of each heatmap by color. SA, SnapATAC; SN, Signac; CoA, Co-accessibility. 1611 

m. Heatmaps of (left) gene expression or (right) gene scores for the top 1,000 differentially 1612 

expressed genes (selected from bulk RNA-seq) across all cell types from the matched bulk ATAC-1613 

seq and RNA-seq data. 1614 
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 1615 

Supplementary Fig. 10. 1616 

a. Bar plot showing the number of cells passing ArchR QC thresholds from each of the immune 1617 

cell scATAC-seq datasets used for the ~220k cell hematopoiesis dataset. 1618 

b-c. Aggregate (b) TSS insertion profiles centered at all TSS regions or (c) fragment size 1619 

distributions for the cells passing ArchR QC thresholds for each sample in the hematopoiesis 1620 

dataset. Line color represents the sample from the dataset as indicated in Supplementary Figure 1621 

10a. 1622 

d. Summary of quality control information for each cell from the hematopoiesis dataset. The 1623 

distribution of (left) TSS enrichment scores, (middle) the number of unique nuclear fragments, 1624 

and (right) the fraction of reads in peak regions (FRiP) are shown for each single cell passing 1625 

filter. 1626 

e. Benchmarking of peak memory usage for analysis of (top) the ~220,000 cells from the 1627 

hematopoiesis dataset and (bottom) ~1,200,000 simulated PBMCs using a computational 1628 

infrastructure with 32 GB of RAM and 8 cores with an HP Lustre file storage system. 1629 

f. UMAPs of scATAC-seq data derived from estimated LSI of the hematopoiesis dataset using 1630 

different numbers of landmark cells. These UMAPs are colored by the clusters identified from the 1631 

25,000-cell estimated LSI shown in Figure 3b. 1632 

g-i. UMAPs of scATAC-seq data as shown in Figure 3b, colored by (g) the different experimental 1633 

samples (as shown in Supplementary Figure 10a), (h) the number of unique nuclear fragments, 1634 

or (i) the per-cell TSS enrichment score. 1635 

 1636 

Supplementary Fig. 11. 1637 

a. Schematic for the generation of sample-aware pseudo-bulk replicates in ArchR for downstream 1638 

analyses. Briefly, for each cell grouping (in most cases identified by clusters), cells are split per 1639 

sample of origin. Next, for each cell grouping these sample-aware cell groups are tested for being 1640 
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larger than a specified minimum number of cells to create a specified minimum number of sample-1641 

aware replicates. If these requirements are not met with a simple splitting, ArchR accounts for 1642 

each different case by using sub-sampling approaches (see methods). 1643 

b. Schematic for iterative overlap peak merging in ArchR to identify non-overlapping fixed-width 1644 

peaks. Briefly, peaks (peak summits that are extended to yield fixed-width peaks) are called per 1645 

sample and then ranked by significance. Next, for all peaks across multiple samples, the peak 1646 

with the highest significance is kept. Peaks directly overlapping this most-significant peak are 1647 

discarded and then this procedure is repeated until all peaks have either been kept or discarded, 1648 

thus converging upon a non-overlapping fixed-width peak set. 1649 

c. Bar plot showing the number of final peaks identified across all clusters (“Union Peaks”) and 1650 

within each cluster from the hematopoiesis dataset. Bars are colored by peak annotation relative 1651 

to a supplied gene set. 1652 

d. Heatmap of hypergeometric enrichment testing the overlap of curated peak sets from 1653 

previously published bulk ATAC-seq data (provided by ArchR) with the marker peak sets identified 1654 

for each cluster in the hematopoiesis dataset in Figure 3c. 1655 

 1656 

Supplementary Fig. 12. 1657 

a. Schematic for the projection of bulk ATAC-seq data into an existing single-cell embedding using 1658 

LSI projection. Briefly, bulk ATAC-seq data is deeply sequenced (10-20 million fragments), down 1659 

sampled to a fragment number corresponding to the average single-cell experiment, and LSI-1660 

projected into the single-cell subspace. 1661 

b. LSI projection of bulk ATAC-seq data from diverse hematopoietic cell types into the scATAC-1662 

seq embedding of the hematopoiesis dataset. 1663 

c-d. UMAP of scATAC-seq data from the hematopoiesis dataset (N = 215,031 cells) colored by 1664 

(c) sorted cells processed with the Fluidigm C1 system or (d) inferred gene scores for marker 1665 

genes of hematopoietic cells. 1666 
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e. Schematic of the scalable chromVAR method implemented in ArchR. Briefly, ArchR computes 1667 

global accessibility within each peak and then computes chromVAR deviations for each sample 1668 

independently. This design facilitates large-scale chromVAR analysis with minimal memory usage 1669 

for massive-scale scATAC-seq datasets. 1670 

f. Dot plot showing the identification of positive TF regulators through correlation of chromVAR 1671 

TF deviation scores and inferred gene scores in cell groups (Correlation > 0.5 and Deviation 1672 

Difference in the top 50th percentile). These TFs were additionally filtered by the maximum 1673 

observed deviation score difference observed across each cluster average. This additional filter 1674 

removes TFs that are correlated but do not have large accessibility changes in hematopoiesis. 1675 

g. Schematic of TF footprinting with Tn5 bias correction in ArchR. Briefly, base-pair resolution 1676 

insertion coverage files from sample-aware pseudo-bulk replicates are used to compute the 1677 

insertion frequency around each motif for each replicate. For each motif, the total observed k-1678 

mers relative to the motif center per bp are identified. This k-mer position frequency table can 1679 

then be multiplied by the individual sample Tn5 k-mer frequencies to compute the Tn5 insertion 1680 

bias per replicate. 1681 

h. TF footprint for the NFIA motif. Lines are colored by cluster identity from the hematopoiesis 1682 

dataset shown in Figure 3b. 1683 

i. Benchmarking of run time for TF footprinting with ArchR for the 102 sample-aware pseudo-bulk 1684 

replicates from the hematopoiesis dataset. 1685 

 1686 

Supplementary Fig. 13. 1687 

a. Schematic of the ArchR integrative genome browser. Briefly, the ArchR integrative browser is 1688 

launched with a single command into an interactive Shiny session. From there, users can select 1689 

any gene to visualize the accessibility genome track. Additionally, users can change cell 1690 

groupings, resolution, layout and more with an intuitive user interface. Lastly, users can supply 1691 
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custom feature regions (such as peak sets) or looping/linkage sets (such as peak co-1692 

accessibility). 1693 

b-e. Genome accessibility track visualization of marker genes with peak co-accessibility for (b) 1694 

the CD1C locus (chr1:158,209,562-158,299,563), (c) the AVP locus (chr20:3,040,369-1695 

3,090,370), (d) the RORC locus (chr1:151,764,347-151,819,348), and (e) the SDC1 locus 1696 

(chr2:20,400,193-20,450,194). 1697 

 1698 

Supplementary Fig. 14. 1699 

a. Side-by-side UMAPs for the hematopoiesis dataset cells colored by (top) gene expression 1700 

(log2(Normalized Counts + 1)) from scRNA-seq alignment or (bottom) inferred gene scores 1701 

(log2(Gene Score + 1)) from gene score Model 42 (see Figure 2c) for key immune marker genes. 1702 

 1703 

Supplementary Fig. 15. 1704 

a. Schematic of identification of peak-to-gene links with ArchR. First, all combinations of peak-to-1705 

gene linkages are identified. Second, the peak accessibility and gene expression for cell groups 1706 

are calculated. Finally, all potential peak-to-gene linkages are tested and significant links (R > 1707 

0.45 and FDR < 0.1) are kept. 1708 

b. Heatmap of 70,239 peak-to-gene links identified across the hematopoiesis dataset with ArchR. 1709 

 1710 

 1711 

 1712 

 1713 

 1714 

 1715 

 1716 

 1717 
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Supplementary Tables 1718 

 1719 

Supplementary Table 1. scATAC-seq Data Sets 1720 

This table contains information about each scATAC-seq data set used in this study including QC 1721 

statistics, scATAC platform and source. 1722 

 1723 

Supplementary Table 2. scATAC-seq Benchmarking Results 1724 

This table contains information corresponding to benchmarking results of Signac, SnapATAC and 1725 

ArchR for the benchmarking data sets used in this study. Information such as run time and 1726 

maximum memory usage are present in this table. 1727 

 1728 

Supplementary Table 3. Gene Score Models 1729 

This table contains information for each of the Gene Score models used in Figure 2. Descriptions 1730 

of each model are provided in this table. 1731 

 1732 

Supplementary Table 4. Positive Hematopoietic Regulators 1733 

This table contains information for the identification of positively correlated Hematopoietic TFs. 1734 

Information such as Pearson correlation, linkage statistics and motif are located in this table. 1735 

 1736 

Supplementary Table 5. Hematopoiesis Peak To Gene Linkages  1737 

This table contains information corresponding to the peak to gene linkages in Hematopoiesis. 1738 

Information such as peak coordinate, gene coordinate and Pearson correlation can be found in 1739 

this table. 1740 

 1741 

 1742 

 1743 
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Figure 3
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 6
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Supplementary Figure 7
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Supplementary Figure 9
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Supplementary Figure 10
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Supplementary Figure 13
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