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ABSTRACT 41 

 42 

Genome-wide association studies (GWAS) have identified thousands of variants associated with 43 

disease phenotypes. However, the majority of these variants do not alter coding sequences, making 44 

it difficult to assign their function. To this end, we present a multi-omic epigenetic atlas of the 45 

adult human brain through profiling of the chromatin accessibility landscapes and three-46 

dimensional chromatin interactions of seven brain regions across a cohort of 39 cognitively healthy 47 

individuals. Single-cell chromatin accessibility profiling of 70,631 cells from six of these brain 48 

regions identifies 24 distinct cell clusters and 359,022 cell type-specific regulatory elements, 49 

capturing the regulatory diversity of the adult brain. We develop a machine learning classifier to 50 

integrate this multi-omic framework and predict dozens of functional single nucleotide 51 

polymorphisms (SNPs), nominating gene and cellular targets for previously orphaned GWAS loci. 52 

These predictions both inform well-studied disease-relevant genes, such as BIN1 in microglia for 53 

Alzheimer’s disease (AD) and reveal novel gene-disease associations, such as STAB1 in microglia 54 

and MAL in oligodendrocytes for Parkinson’s disease (PD). Moreover, we dissect the complex 55 

inverted haplotype of the MAPT (encoding tau) PD risk locus, identifying ectopic enhancer-gene 56 

contacts in neurons that increase MAPT expression and may mediate this disease association. This 57 

work greatly expands our understanding of inherited variation in AD and PD and provides a 58 

roadmap for the epigenomic dissection of noncoding regulatory variation in disease. 59 

 60 

INTRODUCTION 61 

 62 

Alzheimer’s disease (AD) and Parkinson’s disease (PD) affect ~50 and ~10 million individuals 63 

world-wide, as two of the most common neurodegenerative disorders. Several large consortia have 64 

assembled genome-wide association studies (GWAS) that associate genetic variants with clinical 65 

diagnoses of probable AD dementia1–4 or probable PD5–7, or with their characteristic pathologic 66 

features. These efforts have led to the identification of dozens of potential risk loci for these 67 

prevalent neurodegenerative diseases. One goal of these studies was to build more precise 68 

molecular biomarkers of AD or PD, efforts that are beginning to yield encouraging results with 69 

polygenic risk scores8. The other major goal was to gain deeper insight into the molecular 70 

pathogenesis of disease and thereby inform novel therapeutic targets. Some of the risk loci contain 71 

coding variants and so have credibility as putative disease mediators. However, most risk loci are 72 

in noncoding regions and so it remains unclear if the nominated (often nearest) gene is the 73 

functional disease-relevant gene, or if some other gene is involved9. Furthermore, even if the 74 

nominated gene is a true positive, the noncoding risk locus might regulate additional genes. These 75 

challenges remain a fundamental gap in interpreting the etiology of neurodegenerative diseases 76 

and detecting high-confidence therapeutic targets. 77 

To an extent not achieved in other organs, human brain function is closely coupled to region 78 

and thus cellular composition. However, GWAS are agnostic to the regional and cellular 79 

heterogeneity of the brain, making it difficult to a priori predict which brain regions or specific 80 
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cell types may mediate the phenotypic association. In addition, functional noncoding SNPs would 81 

be predicted to exert their effects through alteration of gene expression via perturbation of 82 

transcription factor binding and regulatory element function9. Moreover, such regulatory elements 83 

are highly cell type-specific10. Thus, comprehensive nomination of putative functional noncoding 84 

SNPs in the brain requires cataloging the regulatory elements that are active in every brain cell 85 

type in the correct organismal and regional context. These critical data will illuminate the 86 

functional significance of genetic risk loci in the molecular pathogenesis of common 87 

neurodegenerative diseases.  88 

Here, we have further expanded upon the current understanding of inherited variation in 89 

neurodegenerative disease through implementation of a multi-omic framework that enables 90 

accurate prediction of functional noncoding SNPs. This framework layers bulk Assay for 91 

Transposase-accessible chromatin using sequencing (ATAC-seq)11, single-cell ATAC-seq 92 

(scATAC-seq)12, and HiChIP enhancer connectome13,14 data over a machine learning classifier to 93 

predict putative functional SNPs driving association with neurodegenerative diseases. Through 94 

these efforts, we pinpoint putative target genes and cell types of several noncoding GWAS locus 95 

in AD and PD, enabling the identification of putative driver polymorphisms regulating expression 96 

of key disease-relevant genes and nominating novel gene-cell type associations. Moreover, our 97 

integrative framework provides a roadmap for application of this data and technology to any 98 

neurological disorder, thus enabling a more comprehensive understanding of the role or inherited 99 

noncoding variation in disease. 100 

 101 

RESULTS 102 

 103 

Chromatin accessibility landscapes identify brain regional epigenomic heterogeneity 104 

We profiled the chromatin accessibility landscapes of 7 brain regions across 39 cognitively healthy 105 

individuals to deeply characterize the role of the noncoding genome in neurodegenerative diseases 106 

(Supplementary Table 1). These brain regions include distinct isocortical regions [superior and 107 

middle temporal gyri (SMTG, Brodmann areas 21 and 22), parietal lobe (PARL, Brodmann area 108 

39), and middle frontal gyrus (MDFG, Brodmann area 9)], striatum at the level of the anterior 109 

commissure [caudate nucleus (CAUD) and putamen (PTMN)], hippocampus (HIPP) at the level 110 

of the lateral geniculate nucleus, and the substantia nigra (SUNI) at the level of the red nucleus 111 

(Figure 1a). These regions were chosen to represent the diversity of brain functionality and cell 112 

type composition, and to be the most relevant to prevalent neurodegenerative diseases. In total, we 113 

generated 268 ATAC-seq libraries from 140 macrodissected brain samples, with technical 114 

replicates for 128 of the 140 samples. From these 268 ATAC-seq libraries, we compiled a merged 115 

set of 186,559 peaks reproducible across at least 30% of samples within a given brain region 116 

(Figure 1b and Supplementary Table 2; see Methods). Dimensionality reduction via t-distributed 117 

stochastic neighbor embedding (t-SNE) identified 4 distinct clusters of samples, grouped roughly 118 

by the major brain region (isocortex, striatum, hippocampus, and substantia nigra; Figure 1c). 119 

Similar groupings were observed in principal component analysis with nearly 40% of the variance 120 
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explaining the difference between striatal and non-striatal brain regions (Supplementary Fig 1a-121 

b). These samples showed no clustering based on covariates such as biological sex, post-mortem 122 

interval, or APOE genotype (Supplementary Fig 1c-d and Supplementary Table 1). Originally, the 123 

samples in this cohort were selected from two clinically similar but pathologically distinct research 124 

participants: (i) cognitively normal individuals with no or low neuropathological features of AD, 125 

or (ii) cognitively normal individuals with intermediate or high burden of neuropathological 126 

features of AD15,16. Comparison of these clinico-pathologically normal and clinically resilient 127 

donor subgroups showed no statistically significant differences in bulk chromatin accessibility in 128 

any of the brain regions profiled (Supplementary Fig. 1e). The variability across these donor 129 

subgroups was minimal in comparison to the differences in chromatin accessibility observed 130 

across different brain regions (Supplementary Fig. 1f). For this reason, these donor subgroups were 131 

treated as a single group in the remainder of analyses. 132 

 Assessment of regional variation in chromatin accessibility through “feature binarization” 133 

(see Methods) identified 28,077 peaks showing region-specific or multi-region-specific 134 

accessibility (Figure 1d). For example, 14,628 and 1,734 peaks were identified with significantly 135 

increased chromatin accessibility only in striatum or substantia nigra, respectively (Figure 1d). 136 

These peak sets showed enrichment for key brain-related transcription factors (TFs) in the FOX, 137 

NEUROD, and OLIG families, consistent with suspected brain-relevant enhancers and promoters 138 

(Figure 1d). Moreover, some peaks within these sets were in the vicinity of key cell lineage-139 

defining genes such as the dopamine receptor D2 (DRD2) in striatal regions, iroquois homeobox 140 

3 (IRX3) in the substantia nigra, and potassium voltage-gated channel modifier subfamily S 141 

member 1 (KCNS1) in the isocortical regions (Figure 1e). Notably, while the hippocampus shares 142 

many peaks with other regions, we identified only 29 peaks that showed significantly increased 143 

chromatin accessibility specifically in this region. Taken together, these results indicate an 144 

extensive degree of brain regional heterogeneity that is likely representative of the functional and 145 

cellular diversity of the brain regions studied here. 146 

 147 

ATAC-seq refines interpretation of inherited risk variants in neurodegeneration 148 

Using this atlas of regional chromatin accessibility, we sought to identify functional noncoding 149 

regulatory elements that may be impacted by disease-associated genetic variation identified 150 

through genome-wide association studies. Approximately 90% of phenotype-associated GWAS 151 

polymorphisms reside in noncoding DNA17, making it difficult to predict a putative functional 152 

impact. Moreover, linkage disequilibrium (LD) makes it difficult to pinpoint a single causative 153 

SNP when many other nearby SNPs are co-inherited. To resolve these complexities, we used a 154 

multi-tiered approach to predict which GWAS SNPs may be functional. First, we identified a 155 

compendium of SNPs that could be associated with either AD or PD (Supplementary Table 3, see 156 

Methods). To do this, we identified (i) any SNPs passing genome-wide significance in recent 157 

GWAS1–3,5–7, (ii) any SNPs exhibiting colocalization of GWAS and eQTL signal, and (iii) any 158 

SNPs in linkage disequilibrium with a SNP in the previous two categories. In total, this identified 159 

9,741 SNPs including 3,245 unique SNPs across 44 loci associated with AD and 6,496 unique 160 
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SNPs across 86 loci associated with PD, with a single locus containing 34 SNPs appearing in both 161 

diseases. We then performed LD score regression to identify brain regional enrichment of 162 

neurodegeneration-related SNPs in noncoding regulatory regions. However, these regional 163 

analyses showed minimal enrichment of GWAS SNPs in peak regions associated with any of the 164 

brain regions profiled (Supplementary Fig. 2a-b). These results provide evidence against a possible 165 

regional effect involving most cell types in a particular area of the brain, but leave open the 166 

possibility of involvement of specific cell types in specific regions of the brain. Thus, we 167 

hypothesized that a single-cell-based approach could provide more granularity in identifying the 168 

precise cell types mediating disease-relevant genetic associations. 169 

 170 

Single-cell ATAC-seq captures regional and cell type-specific heterogeneity 171 

To test this hypothesis and to better understand brain-regional cell type-specific chromatin 172 

accessibility landscapes, we performed single-cell chromatin accessibility profiling in 10 samples 173 

spanning the isocortex (N=3), striatum (N=3), hippocampus (N=2), and substantia nigra (N=2) 174 

(Supplementary Table 1). In total, we profiled chromatin accessibility in 70,631 individual cells 175 

(Figure 2a) after stringent quality control filtration (Supplementary Fig. 2c and Supplementary 176 

Table 4). Unbiased iterative clustering12,18 of these single cells identified 24 distinct clusters 177 

(Figure 2a) which were assigned to known brain cell types based on gene activity scores (see 178 

Methods) compiled from chromatin accessibility signal in the vicinity of key lineage-defining 179 

genes18,19 (Figure 2b and Supplementary Fig. 2c). For example, chromatin accessibility at the 180 

myelin associated glycoprotein (MAG) gene locus defined clusters corresponding to 181 

oligodendrocytes while genes such as vesicular glutamate transporter 1 (VGLUT1 / SLC17A7) and 182 

vesicular GABA transporter (VGAT / SLC32A1) defined excitatory and inhibitory neurons, 183 

respectively (Figure 2b). Additionally, 13 of the 24 clusters showed regional specificity with some 184 

clusters being made up almost entirely from a single brain region (Figure 2c and Supplementary 185 

Table 4). This is most obvious for neuron, astrocyte, and oligodendrocyte precursor cell (OPC) 186 

clusters which show clear region-specific differences in clustering (Supplementary Fig. 3a-b). 187 

From this cluster-based perspective, we did not identify any clusters that were clearly segregated 188 

by gender but the sample size used in this study was not powered to make such a determination 189 

(Supplementary Fig. 3c). Cumulatively, we defined 8 distinct cell groupings and identified one 190 

cluster (Cluster 18) as putative doublets that we excluded from downstream analyses (Figure 2a 191 

and Supplementary Fig. 3d). These cell groupings varied largely in the total number of cells per 192 

grouping (Supplementary Fig. 3e) and showed distinct donor and regional compositions 193 

(Supplementary Fig. 3f-i).  194 

 Using these robustly defined clusters, we then called peaks of pseudo-bulk chromatin 195 

accessibility to create a union set of 359,022 reproducible peaks (Supplementary Table 5). Overall, 196 

89% of the bulk ATAC-seq peaks were overlapped by a peak called in the scATAC-seq data 197 

(Figure 2d). Conversely, only 34% of the scATAC-seq peaks were overlapped by a peak from the 198 

bulk ATAC-seq peak set (Figure 2d). This is consistent with the known difficulty in identifying 199 

peaks in bulk data derived from cell types that comprise less than 20% of the total cells in the 200 
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tissue20. These results highlight the utility of single-cell methods in situations where cell type-201 

specific peaks are difficult to identify from bulk tissues containing multiple distinct cell types at 202 

varying frequencies. 203 

 This single-cell ATAC-seq-derived peak set enabled the identification of 221,062 highly 204 

cell type-specific peaks (Figure 2e). These peaks, comprising more than 60% of all peaks identified 205 

in our single-cell data, were selected to be specific to a single cell type or specifically shared across 206 

up to three cell types using “feature binarization” (see Methods). For example, some peaks are 207 

shared across the 3 different neuronal groups (excitatory, inhibitory, nigral) while others are shared 208 

across astrocytes, OPCs, and oligodendrocytes (Figure 2e, Supplementary Table 6). However, the 209 

majority of cell type-specific peaks are uniquely accessible in a single cell type; for example, 210 

microglia show 45,196 peaks that are specifically accessible in microglia and not in any of the 211 

other cell types profiled (Figure 2e). In total, more than 47% of the peaks called in our single-cell 212 

ATAC-seq data are specific to a single cell type (Supplementary Table 6) with the vast majority 213 

of these cell type-specific peaks remaining undetected in our bulk ATAC-seq analyses. To predict 214 

which TFs may be responsible for establishing and maintaining these cell type-specific regulatory 215 

programs, we performed motif enrichment analyses of peaks specific to each cell type (Figure 2f). 216 

We identified many known drivers of cell type identity, such as motifs specific to SOX9 and 217 

SOX10 in oligodendrocytes21,22, or to ASCL1 in OPCs23,24. Lastly, TF footprinting from our 218 

scATAC-seq-derived cell type-specific chromatin accessibility data showed enrichment of binding 219 

of key lineage defining TFs SPI1 and JUND in microglia and neurons, respectively (Figure 2g). 220 

Overall, these results provide a reference map of chromatin accessibility in the adult brain at single-221 

cell resolution. 222 

 223 

Single-cell ATAC-seq provides reference cell populations for deconvolution of cell type-224 

specific signals in bulk data 225 

Using the cell type-specific signals present in our scATAC-seq data (Supplementary Fig. 4a), we 226 

performed cell type deconvolution of our bulk ATAC-seq data using CIBERSORT25 227 

(Supplementary Table 7). Using our 8 cell type classification, we deconvolved the ATAC-seq 228 

signal from all 140 samples profiled by bulk ATAC-seq in this study, finding clear and expected 229 

patterns of cell type abundance such as a relative absence of excitatory neurons in the striatum 230 

(Supplementary Fig. 4b). Similarly, deconvolution based on clusters shows expected patterns 231 

including the mapping of signal from Cluster 14 (nigral astrocytes) specifically to samples from 232 

the substantia nigra, and mapping of signal from Cluster 2 (striatal inhibitory neurons) specifically 233 

to samples from the striatum (Supplementary Fig. 4c). By comparing the CIBERSORT prediction 234 

to the observed “ground truth” in the scATAC-seq data for the 10 samples profiled here, we were 235 

able to assess the performance of the cell type-specific and cluster-specific classifiers 236 

(Supplementary Fig. 4d-e). As would be expected, the cell type-specific classifier showed better 237 

performance than the cluster-specific classifier, largely due to over- or under-prediction of closely 238 

related clusters, such as the oligodendrocytic Clusters 19-23, by the cluster-specific classifier 239 

(Supplementary Fig. 4e). Application of the cell type-specific and cluster-specific classifiers to 240 
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each individual bulk ATAC-seq sample profiled above showed a striking degree of variability in 241 

the bulk data based on predicted cell type abundance (Supplementary Fig. 4f-g). Such large 242 

differences in cell type composition can hamper efforts to find differential features, further 243 

supporting the use of single-cell approaches to understand complex tissues and disease states 244 

where small disease-specific variation may be overshadowed by larger differences in cell type 245 

composition across samples. 246 

 247 

Single-cell ATAC-seq identifies brain region-specific differences in glial cells 248 

Our dissection of the cell type-specific chromatin landscapes in adult brain identified clusters that 249 

are both region- and cell type-specific such as Cluster 14 which is comprised almost exclusively 250 

of astrocytes from the substantia nigra (Figure 2c and Supplementary Table 4). This observation 251 

indicates that certain brain cell types may show region-specific variation. This phenomenon has 252 

been very well described in neurons, with, for example, inhibitory neurons from the striatum 253 

(largely medium spiny neurons) differing substantially from inhibitory neurons outside of the 254 

striatum26. Murine oligodendrocytes27 and astrocytes28 also show regional differences in 255 

morphology, function, and gene expression. However, the brain-regional variation of glial cells in 256 

humans remains less well understood. To address this, we grouped cells into one of the 8 broad 257 

cell types defined above and created pseudo-bulk reference populations from the cumulative data 258 

(see Methods). Using these region-cell type combinations, we calculated Pearson correlations for 259 

all regions across a single cell type (Supplementary Fig. 5a). As expected, neuronal cell types 260 

showed the most regional variation. 261 

Glial cells, however, also showed substantial regional variation, with astrocytes showing 262 

the most variation followed by OPCs (Supplementary Fig. 5a). Within astrocytes, the greatest 263 

difference was found between the substantia nigra and the isocortex, indicating that the function 264 

or composition of astrocytes may differ across these brain regions. Differential peak analysis 265 

identified significant differences in chromatin accessibility near transcriptional regulators that may 266 

help explain the observed regional astrocytic differences (Supplementary Fig. 5b and 267 

Supplementary Table 8). In particular, nigral astrocytes showed significantly increased 268 

accessibility at the forkhead box B1 (FOXB1), IRX1, IRX2, IRX3, and IRX5 genes. Conversely, 269 

isocortical astrocytes showed significantly increased accessibility at the FOXG1, zic family 270 

member 2 (ZIC2), and ZIC5 genes. These changes in chromatin accessibility would be expected 271 

to correlate with similar changes in gene expression for the annotated genes. Moreover, the gene 272 

activity scores of these genes are definitional for the region-cell subtypes with, for example, 273 

FOXB1 being active only in nigral astrocytes and ZIC2 and ZIC5 being active in all other astrocytes 274 

(Supplementary Fig. 5c-d). Of particular interest, the observed FOX switch from FOXG1 in 275 

isocortical (and hippocampal/striatal) astrocytes to FOXB1 in nigral astrocytes and the significant 276 

changes in chromatin accessibility at the IRX genes represent a potential transcriptional lineage 277 

control mechanism that could help to better understand region-specific functional differences in 278 

these astrocytes. Notably, diencephalic brain regions such as the substantia nigra have previously 279 

been shown to express FOXB129, IRX130, and IRX331 during early brain development, thus 280 
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explaining part of this broad TF-based lineage control. These transcriptional regulators could be 281 

exploited to drive differentiation programs to, for example, create regionally biased glial cells in 282 

vitro. 283 

In addition to controlling regional astrocytic identity, chromatin accessibility at IRX genes 284 

was also found to differentiate nigral OPCs from isocortical OPCs (Supplementary Fig. 5d-e). 285 

Similarly, FOXG1 also showed significantly more accessibility in isocortical OPCs, echoing the 286 

observations from astrocytes. Lastly, chromatin accessibility at the PAX3 gene locus was 287 

significantly higher in nigral OPCs compared to isocortical OPCs (Supplementary Fig. 5d-e). 288 

Taken together, these results identify shared and disparate transcriptional regulatory programs that 289 

likely control regional differences amongst astrocytes and OPCs in the substantia nigra and 290 

isocortex. 291 

Compared to astrocytes, oligodendrocytes and microglia showed less regional variation in 292 

chromatin accessibility (Supplementary Fig. 5f-g). While a small number of genes showed highly 293 

significant regional differences in oligodendrocytes (Supplementary Fig. 5h), very few genes 294 

showed appreciable regional differences among microglia. As noted previously, the regional 295 

differences observed in glial cells are a small fraction of the size and magnitude of regional 296 

differences observed in neurons (Supplementary Fig. 5i-j), further emphasizing the importance of 297 

single-cell approaches to study complex tissues. 298 

 299 

Single-cell ATAC-seq pinpoints the cellular targets of GWAS polymorphisms 300 

Having generated high-quality cell type-specific chromatin accessibility profiles using scATAC-301 

seq, we sought to refine our previous interpretation of GWAS polymorphisms. More specifically, 302 

we aimed to use these data to predict which cell type(s) may be the functional targets of various 303 

polymorphisms. When using peaks called in bulk ATAC-seq, we found that 78 LD-expanded 304 

SNPs in AD and 186 LD-expanded SNPs in PD overlapped peak regions. Combining our bulk 305 

ATAC-seq and scATAC-seq peak sets, we found that 438 SNPs in AD and 880 SNPs in PD 306 

directly overlapped peak regions. This represents a 5-fold increase in the number of SNPs observed 307 

to overlap peaks called from bulk ATAC-seq alone (Supplementary Table 3), illustrating the 308 

importance of cell type-specific interrogation of noncoding regions to dissect GWAS 309 

polymorphisms. Cell type-specific LD score regression using AD and PD GWAS results revealed 310 

a significant increase in per-SNP heritability for AD in the microglia peak set, reinforcing previous 311 

studies2,32,33 (Figure 3a and Supplementary Table 9). Similar analyses in PD showed no significant 312 

enrichment in SNP heritability in any particular cell type, perhaps indicating that the cellular bases 313 

of PD are more heterogeneous than AD (Figure 3a). Though not a focus of the current study, we 314 

note that the data generated here can be used to inform the cellular ontogeny of any brain-related 315 

GWAS. For example, we observe a striking enrichment of SNP heritability for schizophrenia, 316 

neuroticism, and attention deficit hyperactivity disorder in excitatory and inhibitory neurons 317 

(Figure 3a). We also confirmed that the heritability of GWAS SNPs from traits not directly related 318 

to brain cell types, such as lean body mass, were not enriched in any of the tested brain cell types 319 

and that cell types not expected to be involved in brain-related diseases show no enrichment of 320 
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SNP heritability for brain-related disease SNPs (Supplementary Fig. 6a). Thus, combination of our 321 

scATAC-seq data with our curated list of disease-relevant SNPs enables prediction of the cellular 322 

targets of each polymorphism. 323 

 324 

Three-dimensional chromatin landscapes nominate novel target genes of inherited risk 325 

variants 326 

In addition to understanding the cell type-specific impacts of an individual polymorphism, we also 327 

wanted to predict the gene(s) that may be the direct regulatory targets of a given noncoding 328 

polymorphism. We reasoned that the vast majority of functional GWAS SNPs would reside in 329 

noncoding sequences and therefore exert their effects through modulation of enhancer or promoter 330 

activity. As such, we mapped the enhancer-centric three-dimensional (3D) chromatin architecture 331 

in multiple brain regions using HiChIP for histone H3 lysine 27 acetylation (H3K27ac) which 332 

marks active enhancers and promoters (Figure 3b and Supplementary Fig. 6b). In total, we 333 

generated 3D interaction maps for 6 of the 7 regions profiled by ATAC-seq (putamen was excluded 334 

given the high overlap with the caudate nucleus) with an average of 158 million valid interaction 335 

pairs identified per region (Supplementary Fig. 6c). These maps led to the identification of 833,975 336 

predicted 3D interactions across all brain regions profiled of which 331,730 (40%) were 337 

reproducible in at least two brain regions (Supplementary Fig. 6d and Supplementary Table 10). 338 

Of these loops, 29.2% had an ATAC-seq peak present in one anchor, 67.4% had an ATAC-seq 339 

peak present in both anchors, and 3.4% did not overlap any ATAC-seq peaks identified in either 340 

the bulk or scATAC-seq datasets (Supplementary Fig. 6e). Additionally, correlated variation of 341 

chromatin accessibility in peaks across single cells has been shown to predict functional 342 

interactions between regulatory elements19,34. Using this co-accessibility framework, we predicted 343 

regulatory interactions from our scATAC-seq data (Supplementary Fig. 6f), identifying 2,822,924 344 

putative interactions between regions of chromatin accessibility (Supplementary Table 10). This 345 

set of interactions showed only moderate overlap (~20%) with our HiChIP data, consistent with 346 

the ability of this technique to identify cell type-specific regulatory interactions, whereas HiChIP 347 

of bulk brain tissue is better suited for identification of more shared regulatory interactions 348 

(Supplementary Fig. 6f). Together, these two techniques define a compendium of putative 349 

regulatory interactions in the various brain regions studied here. 350 

To predict which genes may be altered by noncoding GWAS polymorphisms, we first 351 

classified GWAS loci according to whether their phenotypic association was likely mediated by 352 

alterations in the coding or noncoding genome (Figure 3c). Across AD and PD, this identified 17 353 

loci that harbored likely functional coding alterations, 68 loci that harbored likely functional 354 

noncoding alterations, 9 loci that could be associated with putatively functional coding and 355 

noncoding alterations, and 22 loci that did not harbor any SNPs in coding regions nor any SNPs 356 

in regulatory regions identified in our chromatin accessibility data (Supplementary Table 3). These 357 

“unknown” loci likely represent noncoding associations in cell types that were not adequately 358 

represented in our analysis. From the original set of 9,741 disease-related SNPs, we identified 438 359 

SNPs for AD and 880 SNPs for PD that overlapped peak regions of chromatin accessibility. Of 360 
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these SNPs, 395 and 531 were involved in a putative enhancer-promoter interaction identified in 361 

our HiChIP or co-accessibility data for AD and PD, respectively (Supplementary Table 3). 362 

Cumulatively, this enabled the identification of 433 and 516 genes putatively affected by the 363 

activity of GWAS polymorphisms in AD and PD, respectively (Figure 3d-e). These gene sets are 364 

enriched for biological processes known to be implicated in AD and PD including lipoprotein 365 

particle clearance1 (AD) and synaptic vesicle recycling35 (PD) (Supplementary Fig. 6g-h). 366 

 367 

Machine learning predicts putative functional SNPs and identifies the molecular ontogeny 368 

of disease associations 369 

To disentangle further the molecular underpinnings of AD and PD associations, we developed a 370 

multi-omic approach to predict functional noncoding GWAS polymorphisms (Figure 4a and 371 

Supplementary Fig. 7a). This approach is anchored in the use of a machine learning framework to 372 

score the allelic effect of a SNP on chromatin accessibility. Using the gapped k-mer support vector 373 

machine (gkm-SVM) framework36, we trained models to learn the patterns and grammars of 374 

chromatin accessibility using our scATAC-seq data (Figure 4b). Specifically, for each cluster (cell 375 

type) identified from the scATAC-seq data, we provided 1000-bp sequences centered at all of the 376 

peak regions from the cluster-specific pseudo-bulk ATAC-seq data and an equal number of GC-377 

matched non-accessible genomic sequences to a gkm-SVM classifier and trained it to predict 378 

whether each sequence is accessible or not. The gkm-SVM models for all 24 scATAC-seq clusters 379 

exhibited high prediction performance on held-out test sequences (Supplementary Fig. 7b-c), 380 

across all folds of a 10-fold validation training paradigm (Supplementary Fig. 7d). 381 

Next, we used three complementary approaches, GkmExplain37, in silico mutagenesis38, 382 

and deltaSVM39 to predict the allelic impact of 1677 candidate SNPs on chromatin accessibility in 383 

each cluster by providing the sequences corresponding to both alleles of each SN to the models for 384 

each of the 24 clusters. All three approaches showed high concordance of predicted allelic effects 385 

across all candidate SNPs (Supplementary Fig. 7e). In total, among the 1677 SNPs that we scored, 386 

we identified 44 high-confidence, and 41 moderate-confidence SNPs that the model predicts will 387 

have a functional consequence on chromatin accessibility via identifiable TF binding sites. 388 

Integration of these predictions with our colocalization, HiChIP, and scATAC-seq data sets 389 

allowed for a comprehensive interrogation of the epigenetic effects of noncoding polymorphisms 390 

in AD and PD (Figure 4a and Supplementary Table 3). 391 

 This multi-omic approach identifies two main categories of novel associations: established 392 

disease-related genes where the precise causative SNP remains unknown, and novel genes 393 

previously not implicated in disease pathogenesis. In each of these categories, our integrative 394 

analysis implicates SNP-gene associations that are supported by (i) the presence of the SNP in an 395 

ATAC-seq peak (Tier 3), (ii) a colocalization, HiChIP interaction, or co-accessibility correlation 396 

linking the SNP to one or more genes (Tier 2), and in many cases (iii) orthogonal prediction of 397 

SNP function via either allelic imbalance (Supplementary Fig.7f), machine learning predictions, 398 

or both (Tier 1) (Supplementary Fig. 7a). Allelic imbalance refers to the differential accessibility 399 

between two alleles when one allele is more readily bound than the other. This is obtained from 400 
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our bulk ATAC-seq data which is available for all donors, thus highlighting the utility of a 401 

combined bulk and single-cell approach. Moreover, the cell type-specificity of our scATAC-seq 402 

data allows identification of the cell types in which these disease associations likely form. 403 

Many studies have investigated the role of genes such as Phosphatidylinositol Binding 404 

Clathrin Assembly Protein (PICALM)40, Solute Carrier Family 24 Member 4 (SLC24A4)41, 405 

Bridging Integrator 1 (BIN1)10,42, and Membrane Spanning 4-Domains A6A (MS4A6A)43 in AD 406 

since their implication in the disease by GWAS. However, it remains unclear which 407 

polymorphisms drive these associations. In the case of PICALM, our models predict a potential 408 

functional variant (rs1237999) which resides within an oligodendrocyte-specific regulatory 409 

element 35-kb upstream of PICALM and disrupts a putative FOS/AP1 factor binding site (Figure 410 

4c-d). Moreover, rs1237999 shows striking allelic imbalance with the variant (effect) allele 411 

showing diminished accessibility in bulk ATAC-seq data from heterozygotes across multiple brain 412 

regions (Figure 4e). Lastly, rs1237999 shows 3D interaction with both PICALM and the EED gene, 413 

a polycomb-group family member involved in maintaining a repressive transcriptional state. This 414 

expands the potential functional role of this association to a novel gene and specifically points to 415 

a role for oligodendrocytes which were not previously implicated in this phenotypic association40. 416 

Similarly, the SLC24A4 locus harbors a small LD block with 46 SNPs that all reside within 417 

an intron of SLC24A4. Previous work has implicated both SLC24A4 and the nearby Ras And Rab 418 

Interactor 3 (RIN3) gene in this association but the true mediator remains unclear44,45. Our multi-419 

omic approach identifies a single SNP, rs10130373, which occurs within a microglia-specific peak, 420 

disrupts an SPI1 motif, and communicates specifically with the promoter of the RIN3 gene (Figure 421 

4f-g). This is consistent with the role of RIN3 in the early endocytic pathway which is crucial for 422 

microglial function and of particular disease relevance in AD46. 423 

In the case of BIN1, our work and previous work10 predict SNP rs6733839 to disrupt a 424 

MEF2 binding site in a microglia-specific enhancer located 28-kb upstream of the BIN1 promoter 425 

(Supplementary Fig. 8a). Our machine learning framework additionally implicates SNP 426 

rs13025717 which we predict to disrupt a KLF4 binding motif in a microglia-specific putative 427 

enhancer 21-kb upstream of BIN1 (Supplementary Fig. 8b). Both of these SNPs have previously 428 

been shown to have sequence-specific correlations with BIN1 gene expression47. Similarly, we 429 

identified rs636317 in the MS4A6A locus which disrupts a microglia-specific CTCF binding motif 430 

(Supplementary Fig. 8c-d). Cumulatively, these results annotate the most likely functional SNPs 431 

mediating known disease associations in AD and PD (Supplementary Table 3). Importantly, these 432 

predicted functional SNPs do not always affect the expected cell type nor target the closest gene, 433 

further emphasizing the utility of our integrative multi-omic approach. 434 

 Nevertheless, the true promise in studying these noncoding polymorphisms is the 435 

identification of novel genes affected by disease-associated variation. This is perhaps most 436 

important in PD where identification of disease-associated genes is less mature. The ITIH1 GWAS 437 

locus occurs within a 600-kb LD block harboring 317 SNPs and no plausible gene association has 438 

been made to date. We nominate rs181391313, a SNP occurring within a putative microglia-439 

specific intronic enhancer of the Stabilin 1 (STAB1) gene (Figure 5a). STAB1 is a large 440 
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transmembrane receptor protein that functions in lymphocyte homing and endocytosis of ligands 441 

such as low density lipoprotein, two functions that would be consistent with a role for microglia 442 

in PD48. This SNP is predicted to disrupt a KLF4 binding site, consistent with the role of KLF4 in 443 

regulation of microglial gene expression49 (Figure 5b). Similarly, the KCNIP3 GWAS locus 444 

resides in a 300-kb LD block harboring 94 SNPs. Our results identify two putative mediators of 445 

this phenotypic association which lead to very different functional interpretations (Figure 5c). 446 

First, rs7585473 occurs more than 250 kb upstream of the lead SNP and disrupts an 447 

oligodendrocyte-specific SOX6 motif in a peak found to interact with the Myelin and Lymphocyte 448 

(MAL) gene, a gene implicated in myelin biogenesis and function (Figure 5d). Alternatively, we 449 

find rs3755519 in a neuronal-specific intronic peak within the KCNIP3 gene with clear interaction 450 

with the KCNIP3 gene promoter. While this SNP does not show a robust machine learning 451 

prediction, nor reside within a known motif, we do identify allelic imbalance supporting its 452 

predicted functional alteration of transcription factor binding (Figure 5e). Together, these SNPs 453 

provide competing interpretations of this locus, implicating oligodendrocyte- and neuron-specific 454 

functions, and demonstrating the complexities of noncoding SNP interpretation. 455 

 Though many such anecdotes exist (Supplementary Table 3), we also noted a pattern 456 

whereby many SNPs appear to disrupt binding sites related to the CCCTC-Binding Factor (CTCF) 457 

protein. For example, SNP rs6781790 disrupts a predicted CTCFL binding site within the promoter 458 

of the WD Repeat Domain 6 (WDR6) gene (Supplementary Fig. 9a-b). This SNP shows clear 459 

allelic imbalance across a large number of bulk ATAC-seq samples (Supplementary Fig. 9c). 460 

Similarly, SNP rs7599054 disrupts a putative CTCF binding site near the Transmembrane Protein 461 

163 (TMEM163) gene (Supplementary Fig. 9d-e). 462 

 Taken together, this vertical integration of multi-omic data provides an unprecedented 463 

resolution of the landscape of inherited noncoding variation in neurodegenerative disease. 464 

Moreover, this framework and data can be applied to inform the molecular ontogeny of any brain-465 

related GWAS polymorphism, extending the applicability of this work to all neurological disease. 466 

 467 

Epigenomic dissection of the MAPT locus explains haplotype-specific changes in local gene 468 

expression 469 

One of the most common PD-associated risk loci is the microtubule associated protein tau (MAPT) 470 

gene locus. MAPT encodes tau proteins, a primarily neuronal set of isoforms whose pathological, 471 

hyperphosphorylated aggregates form the neurofibrillary tangles of AD50; however, despite the 472 

long known genetic association, it remains unclear how the MAPT locus may play a role in PD. 473 

The MAPT locus is present within a large 1.8-Mb LD block and manifests as two distinct 474 

haplotypes, H1 and H2, which differ genetically in two primary ways: (i) more than 2000 SNPs 475 

differ across the two haplotypes, and (ii) an approximately 1-Mb inversion that includes the MAPT 476 

gene51,52 (Figure 6a). Previous reports have nominated multiple explanations for how these 477 

alterations are associated with PD, including increased MAPT expression in the H1 haplotype53,54 478 

(Figure 6b), different ratios of splice isoforms55–57, and the use of alternative promoters58. We 479 

created a haplotype-specific map of chromatin accessibility and 3D chromatin interactions at the 480 
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MAPT locus (Figure 6c). Using data from heterozygote H1/H2 individuals, we split reads into H1 481 

and H2 haplotypes based on the presence of one of the 2366 haplotype divergent SNP 482 

(Supplementary Table 11; see methods). We tiled the region into non-overlapping 500-bp bins (to 483 

avoid biases in peak calling) and performed a Wilcoxon rank sum test to identify regions that are 484 

differentially accessible both between H1/H1 and H2/H2 homozygotes and between split reads 485 

from H1/H2 heterozygotes (Supplementary Fig. 10a-b). This identified 28 bins including an H1-486 

specific putative enhancer 68 kb upstream of the MAPT promoter and the promoter of the KAT8 487 

regulatory NSL complex subunit 1 (KANSL1) gene located 330 kb downstream of MAPT (Figure 488 

6d (asterisks) and Supplementary Fig. 10c). Using our HiChIP data, we performed haplotype-489 

specific virtual 4C to determine if any of these changes in chromatin accessibility were 490 

accompanied by changes in 3D chromatin interaction frequency. We identified H2-specific 3D 491 

interactions between a putative domain boundary upstream of MAPT (labeled “A”) and the region 492 

surrounding the KANSL1 promoter (labeled “B”) spanning a distance of more than 600 kb inside 493 

of the inversion breakpoints (Figure 6d). Additionally, the H1-specific putative enhancer upstream 494 

of MAPT showed increased interaction with a second putative enhancer intronic to MAPT as well 495 

as with the MAPT promoter (Figure 6d). 496 

To better understand how these epigenetic changes impact local transcription, we used 497 

RNA-sequencing data from the Genotype-Tissue Expression (GTEx) database to identify genes 498 

that show significant haplotype-specific changes. In addition to the previously mentioned 499 

haplotype-specific differences in MAPT expression (Figure 6b), we also identified significant 500 

changes in the expression of genes near the largest changes in chromatin accessibility and 3D 501 

interaction (points “A” and “B”; Figure 6e). These genes include a KANSL1 antisense transcript 502 

(KANSL1-AS1) and a pseudogene of the mitogen-activated protein kinase 8 interacting protein 1 503 

(MAPK8IP1P2) (Supplementary Fig. 10d-e). These increases in gene expression could play a 504 

functional role in pathologic changes mediated by the different MAPT haplotypes or, more likely, 505 

could be a non-functional byproduct of the genomic inversion. 506 

 The above analyses help to understand how the genomic region inside of the MAPT 507 

inversion breakpoints differs between the H1 and H2 haplotypes; however, the inversion also 508 

changes the relative orientation of genes inside the breakpoints to enhancers and promoters outside 509 

of the breakpoints. In this way, the inversion could alter the 3D architecture of the locus and thus 510 

change which enhancers are able to communicate with the MAPT gene. In support of this 511 

hypothesis, we find a long-distance putative enhancer located 650 kb upstream of the MAPT gene 512 

that shows elevated interaction with the MAPT promoter specifically in the H1 haplotype (Figure 513 

6f). We find support for this interaction both in HiChIP data from H1/H1 or H2/H2 homozygotes 514 

and from H1/H2 heterozygotes where the reads have been split based on haplotype divergent SNPs 515 

(Figure 6f). Indeed, we find multiple neuron-specific putative enhancers in this upstream region, 516 

consistent with the known neuron-specific expression of MAPT (Supplementary Fig. 10f), and an 517 

increase in overall 3D interaction between this upstream region and the region surrounding MAPT 518 

inside of the inversion breakpoints (Supplementary Fig. 10g). In total, our epigenomic dissection 519 

of the MAPT locus provides multiple plausible explanations for the haplotype-specific differences 520 
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in MAPT expression and nominates multiple other genes who may exert haplotype-specific effects 521 

that are linked to differing PD phenotypes (Figure 6g). 522 

 523 

DISCUSSION 524 

 525 

Here, we provide a high-resolution epigenetic characterization of the role of inherited noncoding 526 

variation in AD and PD. Our integrative multi-omic framework and machine learning classifier 527 

predicted dozens of functional SNPs, nominating gene and cellular targets for each noncoding 528 

GWAS locus. These predictions both inform well-studied disease-relevant genes, such as BIN1 in 529 

AD, and predict novel gene-disease associations, such as STAB1 in PD. This greatly expands our 530 

understanding of inherited variation in AD and PD and provides a roadmap for the epigenomic 531 

dissection of noncoding variation in neurodegenerative and other complex genetic diseases. 532 

Our work initially focused on two clinically similar but pathologically distinct groups. All 533 

brain donors had been longitudinal participants in research cohorts, extensively evaluated within 534 

two years of death, and scored as high performers by neuropsychological testing (average interval 535 

between last evaluation and death was 362 days). We have shown previously that this cut off 536 

minimizes interval conversion to cognitive impairment or dementia59. One subset of these high 537 

performers had no or low levels of AD or PD neuropathologic change, and are labeled clinico-538 

pathologic normal controls. Another subset of high performers showed neuropathologic changes 539 

of AD sufficient to warrant suspicion of dementia; this not common occurrence has several 540 

designations but is usually labeled resilient, meaning resilient to the clinical expression of 541 

pathologically determined AD. There is intense interest in what underlies resilience to AD because 542 

its mechanisms or adaptations may illuminate means to suppress disease expression and extend 543 

healthspan. Interestingly, our bulk ATAC-seq data showed no statistically significant differences 544 

in chromatin accessibility in any of the seven brain regions profiled for clinico-pathologic controls 545 

vs. resilience to AD. This likely indicates that the differences between these two clinical groups is 546 

minor, or potentially encoded in a rare cell type or a brain region not profiled in this work. 547 

 To inform inherited noncoding variation in neurodegenerative disease, we generated an 548 

epigenomic resource that spans the cellular and regional diversity of the adult brain. We used bulk 549 

ATAC-seq to profile seven distinct brain regions, identifying regional heterogeneity that is largely 550 

based on changes in cell type composition. To mitigate the contribution of cellular diversity to our 551 

analysis, we additionally performed scATAC-seq, profiling the chromatin accessibility of 70,631 552 

individual cells. Cumulatively, this single-cell data identified 24 different cellular clusters which 553 

map to 7 distinct broad cell types (excitatory neurons, inhibitory neurons, nigral neurons, 554 

astrocytes, oligodendrocytes, OPCs, and microglia). Together, this resource captures the regional 555 

and cellular gene regulatory machinery that governs phenotypic expression of noncoding variation, 556 

thus allowing us to identify all polymorphisms that could putatively affect gene expression through 557 

overlap with peaks of chromatin accessibility (Tier 3). To further refine these putative functional 558 

variants, we identified the subset of polymorphisms that could be mapped to gene targets through 559 

3D chromatin interactions or co-accessibility networks (Tier 2). Finally, we employed a machine 560 
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learning approach to predict the subset of polymorphisms that would be likely to perturb 561 

transcription factor binding and validated these predictions with measurements of allelic imbalance 562 

(Tier 1). In total we implicate approximately 5 times as many genes in the phenotypic association 563 

of AD and PD and nominate functional noncoding variants for dozens of previously orphaned 564 

GWAS loci. 565 

Through our integrative analysis, we additionally provide a comprehensive epigenetic 566 

characterization of the MAPT gene locus. The MAPT gene encodes tau isoforms, primarily 567 

neuronal microtubule binding proteins that, under pathologic conditions, can adopt an abnormal 568 

structure and extensive post translational modifications, a process called neurofibrillary 569 

degeneration, which is a hallmark of AD and other neurodegenerative diseases, but not PD15. 570 

Enigmatically, MAPT is a replicated risk locus for PD despite the absence of neurofibrillary 571 

degeneration60,61. The MAPT locus, found on chromosome 17, represents one of the largest LD 572 

blocks in the human genome (1.8 Mb) and is present in two distinct haplotypes, H1 and H2, the 573 

latter formed by an approximately 900 kb inversion of H1 that occurred about 3 million years ago 574 

and is present mostly in Europeans51. Cumulatively, previous work supports MAPT haplotype-575 

specific impacts on transcript amount, transcript stability, and alternative splicing in several 576 

neurodegenerative disorders54,56,57. We highlight multiple epigenetic avenues through which the 577 

MAPT gene is differentially regulated in the H1 and H2 haplotypes, thus explaining at least a 578 

portion of the molecular underpinnings of the observed MAPT GWAS association in PD.  579 

 We developed a multi-omic framework that provides a robust and comprehensive 580 

dissection of inherited variation in neurodegenerative disease. Moreover, the functional 581 

predictions made through our machine learning classifier and integrative analytical approach 582 

greatly expand our understanding of noncoding contributions to AD and PD. More broadly, this 583 

work represents a systematic approach to understand inherited variation in disease and provides 584 

an avenue towards the nomination of novel therapeutic targets that previously remained obscured 585 

by the complexity of the regulatory machinery of the noncoding genome. 586 
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 828 

Figure 1 - ATAC-seq defines brain-regional epigenetic heterogeneity 829 

A. Schematic of the brain regions profiled in this study. Indicated colors are used 830 

throughout. 831 

B. Bar plot showing the number of reproducible peaks identified from samples in each brain 832 

region. The “Merged” bar represents the final merged peak set used for all bulk ATAC-833 

seq analyses. Colors represent the type of genomic region overlapped by a given peak. 834 

The numbers above each bar represent the total number of biological samples profiled for 835 

each brain region. 836 

C. t-SNE dimensionality reduction showing all samples profiled in this study, colored by the 837 

region of the brain from which the data was generated. Each dot represents a single piece 838 

of tissue with technical replicates merged where applicable. 839 

D. Heatmap representation of binarized peaks from ATAC-seq data. Each row represents an 840 

individual peak and each column represents an individual sample. Feature groups 841 

containing more than 1000 peaks are randomly subsetted down to 1000 peaks for display 842 

on the heatmap. Feature groups containing fewer than 50 peaks are not displayed. 843 

Heatmap color represents the row-wise Z-score of normalized chromatin accessibility at 844 

the peak region. Motif names and logos shown to the right of the plot represent motifs 845 

enriched in the various peak sets. 846 

E. Sequencing tracks of region-specific ATAC-seq peaks identified through feature 847 

binarization. From left to right, DRD2 (striatum-specific; chr11:113367951-113538919), 848 

IRX3 (substantia nigra-specific; chr16:54276577-54291319), and KCNS1 (isocortex-849 

specific; chr20:45086706-45107665). Track heights are the same in each vertical panel. 850 

 851 

Figure 2 - Single-cell ATAC-seq identifies cell type-specific chromatin accessibility in the 852 

adult brain 853 

A. Left; UMAP dimensionality reduction showing identified clusters of cells. Each dot 854 

represents a single cell (N = 70,631). Right; Bar plot showing the number of cells per 855 

cluster. Each cluster is labeled to the right of the bar plot and the predicted cell type 856 

corresponding to each cluster is shown colorimetrically. 857 

B. The same UMAP dimensionality reduction shown in Figure 2a but each cell is colored by 858 

its gene activity score for the annotated lineage-defining gene. Grey represents a gene 859 

activity score of 0 while purple represents the maximum gene activity score for the given 860 

gene. 861 

C. Cluster residence heatmap showing the percent of each cluster that is composed of cells 862 

from each sample. Cell numbers were normalized across samples prior to calculating 863 

cluster residence percentages. 864 

D. Bar plot showing the overlap of bulk ATAC-seq and scATAC-seq peak calls. “Bulk” 865 

represents the number of peaks from the bulk ATAC-seq merged peak set that are 866 

overlapped by a peak called in our scATAC-seq merged peak set. “Single-cell” 867 
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represents the number of peaks from our scATAC-seq merged peak set that are 868 

overlapped by a peak called in our bulk ATAC-seq merged peak set. 869 

E. Heatmap representation of binarized peaks from scATAC-seq data. Each row represents 870 

an individual pseudo-bulk replicate (3 per cell type) and each column represents an 871 

individual peak. Feature groups containing fewer than 1000 peaks are not displayed. 872 

Heatmap color represents the column-wise Z-score of normalized chromatin accessibility 873 

at the peak region. 874 

F. Motif enrichments of binarized peaks identified in Figure 2e. Due to redundancy in 875 

motifs, TF drivers were predicted using average gene expression in GTEx brain samples 876 

and accessibility at TF promoters in cell type-grouped scATAC-seq profiles. The final 877 

list of TFs represents a trimmed set of all TFs with the most likely driving TF labeled 878 

below. Color represents the p-value of the hypergeometric test for motif enrichment. 879 

G. Footprinting analysis of the SPI1 (left) and JUND (right) transcription factors across the 880 

7 major cell types. The motif logos are shown above and the Tn5 transposase insertion 881 

biases are shown below. 882 

 883 

Figure 3 - HiChIP and scATAC-seq predict gene and cellular targets of disease-associated 884 

polymorphisms 885 

A. LD score regression identifying the enrichment of GWAS SNPs from various brain- and 886 

non-brain-related conditions in the peak regions of various cell types derived from 887 

pseudo-bulk-based scATAC-seq data. 888 

B. Heatmap representation of HiChIP interaction signal at 100-kb, 25-kb, and 5-kb 889 

resolution at the OLIG2 locus. 890 

C. Characterization of GWAS loci in AD and PD according to the predicted effects of the 891 

polymorphisms. For example, loci whose phenotypic association is likely mediated by 892 

changes in coding regions are marked as “Likely coding”. Loci whose effect could be 893 

mediated by either coding or noncoding mechanisms are marked as “Either coding or 894 

noncoding” whereas loci with no polymorphisms overlapping a peak region or an exonic 895 

region are marked as “Unknown”. 896 

D. Histogram of the number of genes linked per GWAS locus. Each bar represents a bin of 897 

length 1. 898 

E. Venn diagram of (i) the number of genes linked through assessment of the nearest gene to 899 

the lead SNP of each AD (top) and PD (bottom) GWAS locus and (ii) the number of 900 

genes linked though HiChIP and scATAC-seq analyses of LD-expanded polymorphisms. 901 

 902 

Figure 4 - Machine learning predicts functional polymorphisms in AD and PD 903 

A. Schematic of the overall strategy for identification of putative functional SNPs and their 904 

corresponding gene targets. 905 

B. Schematic of the gkm-SVM machine learning approach used to predict which noncoding 906 

SNPs alter transcription factor binding and chromatin accessibility. 907 
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C. Normalized scATAC-seq-derived pseudo-bulk tracks, HiChIP loop calls, co-accessibility 908 

correlations, and machine learning predictions for LD-expanded SNPs in the PICALM 909 

gene locus. For HiChIP, each line represents a loop connecting the points on each end. 910 

Red lines contain one anchor overlapping the SNP of interest while grey lines do not. 911 

D. GkmExplain importance scores for each base in the 50-bp region surrounding rs1237999 912 

for the effect and non-effect alleles from the gkm-SVM model corresponding to 913 

oligodendrocytes (Cluster 21). The predicted motif affected by the SNP is shown at the 914 

bottom and the SNP of interest is highlighted in blue. 915 

E. Dot plot showing allelic imbalance at rs1237999. The ATAC-seq counts for the 916 

reference/non-effect (G) allele and variant/effect (A) allele are plotted. Each dot 917 

represents an individual bulk ATAC-seq sample colored by the brain region from which 918 

the sample was collected. 919 

F. Sequencing tracks as shown in Figure 4c but for the SLC24A4 locus. 920 

G. GkmExplain importance scores for each base in the 50-bp region surrounding 921 

rs10130373 for the effect and non-effect alleles from the gkm-SVM model corresponding 922 

to microglia (Cluster 24). The predicted motif affected by the SNP is shown at the bottom 923 

and the SNP of interest is highlighted in blue. 924 

 925 

Figure 5 - Vertical integration of multi-omic data and machine learning nominates novel 926 

gene targets in AD and PD 927 

A. Normalized scATAC-seq-derived pseudo-bulk tracks, HiChIP loop calls, co-accessibility 928 

correlations, and machine learning predictions for LD-expanded SNPs in the ITIH1 gene 929 

locus. For HiChIP, each line represents a loop connecting the points on each end. Red 930 

lines contain one anchor overlapping the SNP of interest while grey lines do not. 931 

B. GkmExplain importance scores for each base in the 50-bp region surrounding 932 

rs181391313 for the effect and non-effect alleles from the gkm-SVM model 933 

corresponding to microglia (Cluster 24). The predicted motif affected by the SNP is 934 

shown at the bottom and the SNP of interest is highlighted in blue. 935 

C. Sequencing tracks as shown in Figure 5a but for the KCNIP3 locus. 936 

D. GkmExplain importance scores for each base in the 50-bp region surrounding rs7585473 937 

for the effect and non-effect alleles from the gkm-SVM model corresponding to 938 

oligodendrocytes (Cluster 21). The predicted motif affected by the SNP is shown at the 939 

bottom and the SNP of interest is highlighted in blue. 940 

E. Dot plot showing allelic imbalance at rs3755519. The ATAC-seq counts for the 941 

reference/non-effect (A) allele and variant/effect (T) allele are shown. Each dot 942 

represents an individual bulk ATAC-seq sample colored by the brain region from which 943 

the sample was collected. 944 

 945 

Figure 6 - Epigenetic deconvolution of MAPT locus explains haplotype-associated 946 

transcriptional changes 947 
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A. Schematic of the MAPT locus (chr17:44905000-46895000) showing all genes, the 948 

predicted locations of the inversion breakpoints, and the 2366 haplotype-divergent SNPs 949 

used for haplotype-specific analyses. 950 

B. Gene expression of the MAPT gene shown as a box plot from GTEx cortex brain samples 951 

subdivided based on MAPT haplotype. The lower and upper ends of the box represent the 952 

25th and 75th percentiles. The whiskers represent 1.5 multiplied by the inter-quartile 953 

range. 954 

C. Schematic for the allelic analysis of the MAPT region. Data from homozygous H1 and 955 

H2 individuals are directly compared. Data from heterozygous H1/H2 individuals are 956 

first split based off of the presence of haplotype-divergent SNPs in the reads and then 957 

compared.  958 

D. HiChIP (top) and ATAC-seq (middle) sequencing tracks of the region representing the 959 

MAPT locus inside of the predicted inversion breakpoints (chr17:45510000-46580000; 960 

bottom). Each track represents the merge of all available H1 or H2 reads from all 961 

heterozygotes. HiChIP and ATAC-seq tracks represent unnormalized data from 962 

heterozygotes where reads were split based on haplotype. No normalization was 963 

performed because each sample is internally controlled for allelic depth. HiChIP is shown 964 

as a virtual 4C plot where the anchor is indicated by a dotted line and the signal 965 

represents paired-end tag counts overlapping a 10-kb bin. Regions showing significant 966 

haplotype bias in ATAC-seq are marked by an asterisk.  967 

E. GTEx cortex gene expression of genes in the MAPT locus comparing H1 homozygotes to 968 

H1/H2. Regions A and B are shown as in Figure 6d. *p < 0.05 after multiple hypothesis 969 

correction. 970 

F. HiChIP (top) and cell type-specific scATAC-seq (middle) sequencing tracks of the region 971 

representing the MAPT locus outside of the predicted inversion breakpoints (bottom). 972 

HiChIP tracks for bulk homozygote H1 or H2 samples (normalized based on reads-in-973 

loops) are shown at the top while haplotype-specific tracks from heterozygotes 974 

(unnormalized) are shown below. In each HiChIP plot, the anchor represents the MAPT 975 

promoter. 976 

G. Schematic illustrating the predicted haplotype-specific change in long-distance 977 

interaction between the MAPT promoter and the predicted distal enhancer identified in 978 

Figure 6d. Regions marked A and B represent the same regions marked in Figure 6d-e. 979 

 980 

SUPPLEMENTARY FIGURE LEGENDS 981 

 982 

Supplementary Figure 1 - Analysis of bulk ATAC-seq data from adult brain identifies 983 

brain-regional heterogeneity. 984 

A. Principal component analysis of all samples. Each dot represents a single piece of tissue 985 

with technical replicates merged where applicable. Color represents the brain region from 986 

which the sample was isolated. 987 
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B. Dot plot showing the proportion of variance explained by each principal component. 988 

C. Dot plot showing the significance of correlation between covariates and each of the top 5 989 

principal components. Dot size represents the absolute value of the correlation while 990 

color represents the principal component number. 991 

D. Sample by sample Pearson correlation heatmap of all 140 samples profiled in this study. 992 

Brain region, donor biological sex, and APOE genotype are indicated colorimetrically at 993 

the top. 994 

E. MA plots showing the change in normalized bulk ATAC-seq accessibility for each peak 995 

in cognitively healthy control samples with low AD-associated pathology compared to 996 

cognitively healthy control samples with high AD-associated pathology. Each dot 997 

represents an individual peak from the merged bulk ATAC-seq peak set. Only peaks that 998 

showed non-zero accessibility in at least one sample were tested for significance. From 999 

left to right, samples from the caudate nucleus, hippocampus, parietal lobe, and superior 1000 

and middle temporal gyrus are shown. 1001 

F. MA plots showing the change in normalized bulk ATAC-seq accessibility comparing the 1002 

parietal lobe (PARL) to all other brain regions. Each dot represents an individual peak 1003 

from the merged bulk ATAC-seq peak set. Only peaks that showed non-zero accessibility 1004 

in at least one sample were tested for significance. 1005 

 1006 

Supplementary Figure 2 - LD score regression of bulk ATAC-seq data identifies weak 1007 

region-specific enrichment of AD and PD GWAS SNPs. 1008 

A. Bar plot of the enrichment of AD SNPs in peaks regions of bulk ATAC-seq data from 1009 

various brain regions. 1010 

B. Bar plot of the enrichment of PD SNPs in peak regions of bulk ATAC-seq data from 1011 

various brain regions. 1012 

C. Dot plots showing the TSS enrichment score and total number of fragments for each of 1013 

the 10 samples profiled by scATAC-seq. Each dot represents an individual cell. Dot color 1014 

represents density on the plot. Dotted lines represent the quality control cutoffs 1015 

implemented. 1016 

D. Heatmap of cell type-specific markers used to identify clusters. Color represents the row-1017 

wise Z-score of chromatin accessibility in the vicinity of each gene for each cluster. 1018 

 1019 

Supplementary Figure 3 - Region-centric scATAC-seq identifies cellular and regional 1020 

heterogeneity in chromatin accessibility in adult brain 1021 

A. UMAP dimensionality reduction as shown in Figure 2a but colored by the sample from 1022 

which each cell was generated. 1023 

B. UMAP dimensionality reduction as shown in Figure 2a but colored by the brain region 1024 

from which each cell was generated. 1025 

C. UMAP dimensionality reduction as shown in Figure 2a but colored by the biological sex 1026 

of the donor for each cell. 1027 
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D. UMAP dimensionality reduction as shown in Figure 2a but colored by the predicted cell 1028 

type for each cell. 1029 

E. Bar plot showing the number of cells identified in scATAC-seq from each of the 1030 

annotated cell types. 1031 

F. Bar plot showing the number of cells in scATAC-seq from each of the annotated 1032 

donors/samples. Color represents the predicted cell type as shown in the legend next to 1033 

Supplementary Fig. 3h. 1034 

G. Bar plot showing the number of cells identified in scATAC-seq from each of the 1035 

annotated cell types broken down by the brain region from which they originated. Color 1036 

represents the predicted cell type as shown in the legend next to Supplementary Fig. 3h. 1037 

H. Bar plot showing the percentage of each brain region composed by each cell type in 1038 

scATAC-seq data. 1039 

I. Bar plot showing the percentage of cells from each cell type that originated from each 1040 

donor sample profiled by scATAC-seq. Color represents the biological sample from 1041 

which the data was collected. 1042 

 1043 

Supplementary Figure 4 - Cell type-specific scATAC-seq data enables deconvolution of 1044 

chromatin accessibility data from bulk regions in the adult brain. 1045 

A. Sequencing tracks of lineage-defining factors shown across all 24 scATAC-seq clusters. 1046 

From left to right, NEFL (neurons; chr8:24933431-24966791), AIF1 (aka IBA1, 1047 

microglia; chr6:31607841-31617906), MOG (oligodendrocytes; chr6:29652183-1048 

29699713), PDGFRA (OPCs; chr4:54209541-54303643), and GJB6 (astrocytes; 1049 

chr13:20200243-20239571). 1050 

B. Bar plot showing CIBERSORT deconvolution of bulk ATAC-seq data based on 1051 

reference cell populations derived from scATAC-seq data. Clusters were subdivided into 1052 

the 8 groups shown in the legend. These groups were used to preserve as much diversity 1053 

as possible while merging clusters with little divergence (i.e. oligodendrocyte clusters 1054 

#19-23). Bars represent the average of all bulk ATAC-seq samples profiled in the given 1055 

brain regions. 1056 

C. Bar plot showing CIBERSORT deconvolution of bulk ATAC-seq data based on clusters 1057 

derived from scATAC-seq data. Color represents the cluster as shown in the legend of 1058 

Supplementary Fig. 4g. Bars represent the average of all bulk ATAC-seq samples 1059 

profiled in the given brain regions. 1060 

D. Dot plot showing the performance of the CIBERSORT classifier by comparing the 1061 

“ground truth” from scATAC-seq data and the CIBERSORT prediction on the bulk 1062 

ATAC-seq data from the same tissue sample. Each dot represents a cell type (i.e. the 1063 

merge of multiple clusters) from one of the 10 scATAC-seq samples profiled. Dots are 1064 

colored by cell type according to the legend above the plot. 1065 

E. Dot plot showing the performance of the CIBERSORT classifier by comparing the 1066 

“ground truth” from scATAC-seq data and the CIBERSORT prediction on the bulk 1067 
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ATAC-seq data from the same tissue sample. Each dot represents a cluster from one of 1068 

the 10 scATAC-seq samples profiled. Dots are colored by cluster according to the legend 1069 

in Supplementary Fig. 4g. 1070 

F. Bar plot showing CIBERSORT predictions across all bulk ATAC-seq data generated in 1071 

this study. Samples are sorted and colored (bottom of plot) by the region from which they 1072 

were profiled as indicated in the legend below Supplementary Fig. 4g. Bars are colored 1073 

by the predicted cell type. Donor IDs are annotated below the plot. 1074 

G. Bar plot showing CIBERSORT predictions across all bulk ATAC-seq data generated in 1075 

this study. Samples are sorted and colored (bottom of plot) by the region from which they 1076 

were profiled. Bars are colored by the predicted cluster. Donor IDs are annotated below 1077 

the plot. 1078 

 1079 

Supplementary Figure 5 - scATAC-seq reveals epigenetic encoding of region-specific 1080 

cellular gene regulatory programs 1081 

A. Pearson correlation heatmaps showing the correlation of cell types across brain regions. 1082 

Cell type signals were generated by making at least 2 non-overlapping pseudo-bulk 1083 

replicates of at least 150 cells. Cases where insufficient cells were present to make these 1084 

pseudo-bulk replicates were excluded from analysis (ND) to avoid overinterpretation. All 1085 

heatmaps use the same color scale. 1086 

B. Volcano plot of peaks that show differential signal between astrocytes from the substantia 1087 

nigra and astrocytes from the isocortex. Peaks below a log2(fold change) threshold of 2 1088 

were not considered. Peaks near genes that are predicted to be key lineage-defining genes 1089 

are accented with larger colored dots. 1090 

C. UMAP dimensionality reduction plots showing gene activity scores colorimetrically for 1091 

the 4 lineage-defining genes identified in Supplementary Fig. 5b (FOXG1, ZIC5, FOXB1, 1092 

IRX1). 1093 

D. Sequencing tracks of the multiple genomic regions showing differential chromatin 1094 

accessibility between astrocytes or OPCs in the isocortex and substantia nigra. From left 1095 

to right: Isocortex-specific - FOXG1 (chr14:28750000-28787000), and ZIC2/ZIC5 1096 

(chr13:99937000-99999000); Substantia Nigra-specific:- FOXB1 (chr15:59996000-1097 

60012000), IRX1 (chr5:3589600-3607800), IRX2 (chr5:2737000-2760000), IRX3 1098 

(chr16:54277000-54292000), IRX5 (chr16:54927000-54940000), and PAX3 1099 

(chr2:222189500-222333500). Peaks called in scATAC-seq data are shown below each 1100 

plot. Sequencing tracks were derived from merging of all single cells corresponding to 1101 

the annotated cell types in the specified regions. 1102 

E. Volcano plot of peaks that show differential signal between OPCs from the substantia 1103 

nigra and OPCs from the isocortex. Peaks below a log2(fold change) threshold of 2 were 1104 

not considered. Peaks near genes that are predicted to be key lineage-defining genes are 1105 

accented with larger colored dots. 1106 
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F. Same as Supplementary Fig. 5e but for oligodendrocytes in the substantia nigra and 1107 

isocortex. 1108 

G. Same as Supplementary Fig. 5e but of microglia in the substantia nigra and isocortex. 1109 

H. Sequencing tracks of regions identified as differentially accessible in oligodendrocytes 1110 

from the substantia nigra and isocortex. From left to right: Isocortex-specific - SHC2 1111 

(chr19:409800-463200), and INSM1 (chr20:20361000-20374000); Substantia nigra-1112 

specific - RBFOX1 (chr16:5899200-7791000).Sequencing tracks were derived from 1113 

merging of all single cells corresponding to the annotated cell types in the specified 1114 

regions. 1115 

I. Same as Supplementary Fig. 5e but for inhibitory neurons in the isocortex and striatum. 1116 

J. Sequencing tracks of regions identified as differentially accessible in inhibitory neurons 1117 

from the striatum and isocortex. From left to right: Isocortex-specific - KCNJ6 1118 

(chr21:37583000-37955000), and NCALD (chr8:101673000-102141000); Striatum-1119 

specific - DRD2 (chr11:113369000-113602000), and FOXP1 (chr3:70922000-1120 

71622000).Sequencing tracks were derived from merging of all single cells 1121 

corresponding to the annotated cell types in the specified regions. 1122 

 1123 

Supplementary Figure 6 - HiChIP implicates disease-relevant genes in AD and PD through 1124 

linkage of noncoding GWAS SNPs to target genes 1125 

A. LD score regression identifying the enrichment of GWAS SNPs from various brain- and 1126 

non-brain-related conditions in the peak regions of bulk ATAC-seq data from various 1127 

hematopoietic cell types as indicated by color. 1128 

B. Heatmap representation of HiChIP interaction signal at 100-kb, 25-kb, and 5-kb 1129 

resolution at the SOX9 locus. 1130 

C. Bar plots showing the number of valid interaction pairs identified in HiChIP data from all 1131 

samples profiled in this study. Color represents the type of interaction identified. 1132 

D. Bar plot showing the overlap of FitHiChIP loop calls from the 4 gross brain regions 1133 

profiled. Color indicates whether the loop was identified in a single region (unique) or 1134 

more than one region (shared). 1135 

E. Bar plot showing the classification of FitHiChIP loop calls based on whether the loop call 1136 

contained an ATAC-seq peak (bulk or single-cell) or TSS in one, both, or no anchor. 1137 

F. Bar plots showing the number of Cicero-predicted co-accessibility-based peak links that 1138 

are observed in HiChIP (left) or the number of HiChIP-based FitHiChIP loop calls that 1139 

are predicted as peak links by Cicero. 1140 

G. GO-term enrichments of genes linked to AD GWAS SNPs. 1141 

H. GO-term enrichments of genes linked to PD GWAS SNPs. 1142 

 1143 

Supplementary Figure 7 - Machine learning and allelic imbalance predict functional 1144 

noncoding SNPs in AD and PD 1145 
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A. Flow chart of the analytical framework used to prioritize noncoding SNPs and predict 1146 

functionality. The highest confidence SNPs (Tier 1) are supported by either machine 1147 

learning predictions, allelic imbalance, or both. Moderate confidence SNPs (Tier 2) are 1148 

supported by the presence of the SNP within a peak and a HiChIP loop or co-accessibility 1149 

peak link that connects the SNP to a gene. Lower confidence SNPs (Tier 3) are only 1150 

supported by the presence of the SNP in a peak. 1151 

B. Box plot showing the area under the precision-recall curve for the gkm-SVM machine 1152 

learning classifier. Performance for each cluster is shown with dots representing outliers. 1153 

The lower and upper ends of the box represent the 25th and 75th percentiles. The 1154 

whiskers represent 1.5 multiplied by the inter-quartile range. 1155 

C. Box plot showing the area under the receiver-operating characteristics curve for the gkm-1156 

SVM machine learning classifier. Performance for each cluster is shown with dots 1157 

representing outliers. The lower and upper ends of the box represent the 25th and 75th 1158 

percentiles. The whiskers represent 1.5 multiplied by the inter-quartile range. 1159 

D. GkmExplain importance scores shown across all 10 folds for each base across a 100-bp 1160 

window surrounding rs636317 for the effect (left) and noneffect (right) bases. 1161 

E. Dot plots showing comparison of the GkmExplain score, ISM score, and deltaSVM 1162 

score. Each dot represents an individual SNP test in a given fold. Dot color represents the 1163 

GWAS locus number. The only off-diagonal dots (circled) correspond to repetitive 1164 

regions within the MAPT locus where the deltaSVM score appears to be particularly 1165 

sensitive. 1166 

F. Dot plot showing allelic imbalance across all bulk ATAC-seq data used in this study. 1167 

ATAC-seq data was used to genotype individuals to identify heterozygotes. Allelic 1168 

imbalance was defined as ratio of wildtype to variant reads that passes the binomial test 1169 

with a p-value less than 0.05. Color indicates the average significance of the binomial test 1170 

across all heterozygotes. 1171 

 1172 

Supplementary Figure 8 - Multi-omic characterization of well-studied AD-related GWAS 1173 

loci pinpoints putative functional noncoding SNPs 1174 

A. Normalized scATAC-seq-derived pseudo-bulk tracks, HiChIP loop calls, co-accessibility 1175 

correlations, and machine learning predictions for LD-expanded SNPs in the BIN1 locus. 1176 

For HiChIP, each line represents a loop connecting the points on each end. Red lines 1177 

contain one anchor overlapping the SNP of interest while grey lines do not. 1178 

B. GkmExplain importance scores for each base in the 50-bp region surrounding 1179 

rs13025717 for the effect and non-effect alleles from the gkm-SVM model for microglia 1180 

(Cluster 24). The predicted motif affected by the SNP is shown at the bottom and the 1181 

SNP of interest is highlighted in blue. 1182 

C. Sequencing tracks as shown in Supplementary Fig. 8a but for the MS4A gene locus. 1183 

D. GkmExplain importance scores for each base in the 50-bp region surrounding rs636317 1184 

for the effect and non-effect alleles from the gkm-SVM model for microglia (Cluster 24). 1185 
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The predicted motif affected by the SNP is shown at the bottom and the SNP of interest is 1186 

highlighted in blue. 1187 

  1188 

Supplementary Figure 9 - Multi-omic characterization of noncoding SNPs identifies novel 1189 

genes implicated in PD 1190 

A. Normalized scATAC-seq-derived pseudo-bulk tracks, HiChIP loop calls, co-accessibility 1191 

correlations, and machine learning predictions for LD-expanded SNPs in the IP6K2 1192 

locus. For HiChIP, each line represents a loop connecting the points on each end. Red 1193 

lines contain one anchor overlapping the SNP of interest while grey lines do not. 1194 

B. GkmExplain importance scores for each base in the 50-bp region surrounding rs6781790 1195 

for the effect and non-effect alleles from the gkm-SVM model for astrocytes (Cluster 15). 1196 

The predicted motif affected by the SNP is shown at the bottom and the SNP of interest is 1197 

highlighted in blue. 1198 

C. Dot plot showing allelic imbalance at rs6781790. The ATAC-seq counts for the 1199 

reference/non-effect (C) allele and variant/effect (T) allele are plotted. Each dot 1200 

represents an individual bulk ATAC-seq sample colored by the brain region from which 1201 

the sample was collected. 1202 

D. Sequencing tracks as shown in Supplementary Fig. 9a but for the TMEM163 locus. 1203 

E. GkmExplain importance scores for each base in the 50-bp region surrounding rs7599054 1204 

for the effect and non-effect alleles from the gkm-SVM model for microglia (Cluster 24). 1205 

The predicted motif affected by the SNP is shown at the bottom and the SNP of interest is 1206 

highlighted in blue. 1207 

 1208 

Supplementary Figure 10 - Epigenomic dissection of the MAPT locus 1209 

A. Flowchart illustrating the analytical scheme used to identify bins with significant allelic 1210 

imbalance across the H1 and H2 MAPT haplotypes. 1211 

B. Heatmaps showing chromatin accessibility in 500-bp bins identified as having 1212 

significantly different accessibility across MAPT haplotypes. Regions are shown for 1213 

homozygous samples without allelic read splitting (left) and for heterozygous samples 1214 

after allelic read splitting (right). Bin start coordinates are shown to the right. 1215 

C. Box and whiskers plots for multiple regions which show differential chromatin 1216 

accessibility across the H1 and H2 MAPT haplotypes. Each dot represents a single 1217 

homozygous H1 or homozygous H2 sample. Heterozygotes are not shown. The lower and 1218 

upper ends of the box represent the 25th and 75th percentiles. The whiskers represent 1.5 1219 

multiplied by the inter-quartile range. 1220 

D. Gene expression of the KANSL1-AS1 gene shown as a box plot from GTEx cortex brain 1221 

samples subdivided based on MAPT haplotype. The lower and upper ends of the box 1222 

represent the 25th and 75th percentiles. The whiskers represent 1.5 multiplied by the 1223 

inter-quartile range. ***p < 10-5. 1224 
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E. Gene expression of the MAPK8IP1P2 gene shown as a box plot from GTEx cortex brain 1225 

samples subdivided based on MAPT haplotype. The lower and upper ends of the box 1226 

represent the 25th and 75th percentiles. The whiskers represent 1.5 multiplied by the 1227 

inter-quartile range. ***p < 10-5. 1228 

F. Sequencing tracks from pseudo-bulk data derived from predicted cell types in scATAC-1229 

seq data. This region represents a zoomed in view of the predicted distal enhancer region 1230 

(chr17:45216500-45324000) that interacts with the MAPT promoter in the H1 haplotype. 1231 

Putative neuron-specific enhancers are highlighted in blue. 1232 

G. Box plots showing differential HiChIP interaction signal occurring between regions 1233 

within the MAPT inversion and regions outside the inversion (“left” or “right”). The 1234 

schematic at the top explains the analysis performed. The box plots show normalized 1235 

HiChIP interaction counts for the H1 and H2 haplotypes for upstream/“left” interactions 1236 

and downstream/“right” interactions. 1237 

 1238 
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 1240 

Supplementary Table 1 – Donor information and sequencing statistics for all samples profiled 1241 

by bulk ATAC-seq, scATAC, and HiChIP. 1242 
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 1265 

Supplementary Table 10 – All FitHiChIP loop calls overlapping a SNP on at least one anchor. 1266 

 1267 

Supplementary Table 11 – All SNPs that are divergent between the H1 and H2 haplotypes in 1268 

the MAPT locus. 1269 

 1270 

METHODS 1271 

  1272 

Code Availability 1273 

All custom code used in this work is available in the following GitHub repository: 1274 

https://github.com/kundajelab/alzheimers_parkinsons. 1275 

 1276 

Publicly Available Data Used In This Work 1277 

All QTL analysis was performed using GTEx v8. Additionally, we downloaded full-genome 1278 

summary statistics of GWAS associations for three Alzheimer's cohorts1–3 and three Parkinson's 1279 

cohorts6,7,62; however, it should be noted that these cohorts are not all mutually exclusive. 1280 

 1281 

Genome Annotations 1282 

All data is aligned and annotated to the hg38 reference genome. 1283 

 1284 

Sequencing 1285 

Bulk ATAC-seq, and HiChIP were sequenced using an Illumina HiSeq 4000 with paired-end 75-1286 

bp reads. Single-cell ATAC-seq was sequenced using an Illumina NovaSeq 6000 with an S4 flow 1287 

cell with paired-end 99 bp reads. 1288 

 1289 

Sample acquisition and patient consent 1290 

Primary brain samples were acquired post-mortem with IRB-approved informed consent. Human 1291 

donor sample sizes were chosen to provide sufficient confidence to validate methodological 1292 

conclusions. Human brain samples were collected with an average post-mortem interval of 3.9 1293 

hours (range 2.0 – 6.9 hours). Macrodissected brain regions were flash frozen in liquid nitrogen. 1294 

Some samples were embedded in Optimal Cutting Temperature (OCT) compound. All samples 1295 

were stored at -80°C until use. Due to the limiting nature of these primary samples, this unique 1296 

biological material is not available upon request. 1297 

 1298 

Isolation of nuclei from frozen tissue chunks 1299 

Nuclei were isolated from frozen tissue as described previously63,64. This protocol is now available 1300 

on protocols.io (dx.doi.org/10.17504/protocols.io.6t8herw). After isolation, nuclei were 1301 

cryopreserved in BAM Banker (Wako Chemicals) and stored at -80°C for use in other assays such 1302 

as scATAC-seq and HiChIP. 1303 

 1304 

https://github.com/kundajelab/alzheimers_parkinsons
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Statistics 1305 

All statistical tests performed are included in the figure legends or methods where relevant. 1306 

 1307 

ATAC-seq Data Processing 1308 

The ENCODE DCC ATAC-seq pipeline (doi:10.5281/zenodo.211733) (V1.1.7) was used to 1309 

process bulk ATAC-seq samples, starting from fastq files.  The pipeline was executed with IDR 1310 

enabled and the IDR threshold set to 0.05. The GRCh38 reference genome assembly was used, 1311 

keeping only the primary chromosomes chr1 - chr22, chrX, chrY, chrM. The pipeline was executed 1312 

with ATAQC enabled, using GENCODE version 29 TSS annotations. Biological replicates were 1313 

analyzed individually, with the two technical replicates for each bio-rep provided as inputs to the 1314 

“atac.bams” argument of the pipeline. Other arguments to the pipeline were kept at their defaults.  1315 

 1316 

ATAC-seq Peak Calling 1317 

Pipeline peak calls underwent several levels of filtering to identify credible peak sets. The IDR 1318 

optimal peak set from the DCC pipeline for each biological replicate was determined. It was 1319 

observed that although the IDR peaks for individual biological replicates were corrected for 1320 

multiple testing, the high number of biological samples in the dataset served as another source of 1321 

multiple testing error. To address this source of error, tagAlign files for all biological replicates 1322 

for a given brain region/ condition were concatenated. The DCC pipeline (v1.1.7) was 1323 

subsequently executed on the merged tagAlign files as single-replicate inputs. The pipeline 1324 

generated pseudo-replicates from the input tagAlign files for each brain region/condition. Optimal 1325 

IDR peaks were called from the pseudo-replicates. This set of IDR peaks was filtered to keep peaks 1326 

supported by 30 percent or more of IDR peaks from the pipeline runs on individual biological 1327 

replicates. 1328 

Sample-by-peak count matrices were then generated from the resulting set of filtered peaks. 1329 

Filtered peaks from the pooled tagAlign files were concatenated and truncated to within 200 base 1330 

pairs of the summit (100 base pair flank kept upstream and downstream of the peak summit). These 1331 

200 bp regions were merged with the bedtools65 merge command to avoid merging peaks with low 1332 

levels of overlap. The bedtools coverage -counts was used to compute the number of tagAlign 1333 

reads that overlapped each peak region in the pseudo-replicates in the merged tagAlign dataset. 1334 

This analysis yielded a total of n=186,559 peaks combined across the brain regions. 1335 

 1336 

Motif enrichment 1337 

Motif enrichment was performed using the hypergeometric test as described previously64,66. 1338 

 1339 

Feature Binarization 1340 

Identification of “unique” peaks from ATAC-seq data was performed as described previously12,64.  1341 

 1342 

Sequencing Tracks 1343 
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Sequencing tracks were created using the WashU Epigenome Browser. All sequencing tracks of a 1344 

given locus have the same y-axis. All tracks show data that has been normalized by “reads-in-1345 

peaks” (for ATAC-seq) or “reads-in-loops” for HiChIP to account for differences in signal-to-1346 

background ratios across multiple samples, unless otherwise stated. For all sequencing tracks, 1347 

genes that are on the plus strand (i.e. 5’ to 3’ in the left to right direction) are shown in red and 1348 

genes that are on the minus strand (i.e. 5’ to 3’ in the right to left direction) are shown in blue to 1349 

enable identification of the TSS. 1350 

 1351 

LD score regression 1352 

We apply stratified LD score regression, a method for partitioning heritability from GWAS 1353 

summary statistics, to sets of tissue or cell type specific ATAC-seq peaks to identify disease-1354 

relevant tissues and cell types across for Alzheimer's and Parkinson's diseases along with other 1355 

brain-related GWAS traits. We used both bulk ATAC-seq and single cell ATAC-seq data. For 1356 

bulk ATAC-seq we kept only peaks replicating in at least 30% of samples for each tissue part. 1357 

ATAC-seq peaks were converted from hg38 to hg19 for analysis with GWAS data. We followed 1358 

the LD score regression tutorial (https://github.com/bulik/ldsc/wiki) as used previously67 for bulk 1359 

data and as recently developed for single-cell specific analysis68. We used brain related GWAS 1360 

summary statistics such as Alzheimer's1, Parkinson's6, Schizophrenia69, Anorexia Nervosa70, 1361 

Attention Deficit Hyperactivity Disorder (ADHD)71, Anxiety72, Neuroticism73 and Epilepsy74. To 1362 

serve as controls, we also used summary statistics for GWAS of traits not obviously linked to brain 1363 

tissues such as Lean Body Mass75, Bone Mineral Density76 and Coronary Artery Disease77. In 1364 

particular, we looked at the regression coefficient p-value, indicative of the contribution of this 1365 

annotation to trait heritability, conditional on the other annotations. 1366 

 1367 

Allelic imbalance from ATAC-seq data 1368 

Samples were first re-aligned to an N-masked version of the hg38 genome where all relevant SNP 1369 

positions were changed to “N” to prevent mapping bias. Allelic depth at each desired position was 1370 

obtained using samtools mpileup (v1.5) followed by varscan mpileup2snp (v2.4.3). Allele counts 1371 

for the reference and variant alleles were extracted and compared using the binomial test to identify 1372 

significant allelic imbalance. 1373 

 1374 

SNP selection for colocalization testing 1375 

A single test for colocalization of GWAS and eQTL association signals involves a locus, a GWAS, 1376 

an eQTL tissue, and a gene expressed in that tissue. For each GWAS, we selected the set of all loci 1377 

for which the lead GWAS variant had p-value < 1e-5. Using eQTLs from GTEx brain tissues in 1378 

the GTEx v8 dataset, we then found all tissue-gene combinations for which the lead SNP at one 1379 

of the GWAS loci had an eQTL SNP (association p-value < 1e-5) for that gene in that GTEx tissue. 1380 

This resulted in a list of unique combinations of GWAS trait / genomic locus / eQTL tissue / eQTL 1381 

gene, each to be tested individually for colocalization of GWAS and eQTL signals. The GWAS 1382 

threshold of 1e-5 is less stringent than the threshold for genome-wide significance, but we favored 1383 

https://github.com/bulik/ldsc/wiki
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sensitivity over specificity when selecting which SNPs to test, since colocalization with a strong 1384 

eQTL signal may still suggest that a sub-threshold GWAS locus has an expression-mediated effect 1385 

on disease. 1386 

 1387 

Colocalization analysis 1388 

For each colocalization test combination as defined above, we selected all 1000 Genomes Phase 3 1389 

variants within a window of 500kb around the lead GWAS variant. We narrowed this list down to 1390 

SNPs measured not only in the 1000 Genomes VCF, but also in the GWAS and eQTL summary 1391 

statistics for the selected trait, tissue, and gene. We used a streamlined version of the FINEMAP 1392 

tool78 to compute posterior causal probabilities for each SNP at the locus in both the GWAS and 1393 

eQTL studies, and then combined these probabilities as described in eCAVIAR79 to compute a 1394 

colocalization posterior probability (CLPP) score for this test locus. We considered a SNP weakly 1395 

colocalized if its CLPP score exceeded 0.01 and strongly colocalized if its CLPP score exceeded 1396 

0.05; although these seem like quite low probabilities, we have seen previously that loci exceeding 1397 

this latter cutoff show strong likelihood of sharing causal variants80. 1398 

 1399 

Selection of candidate SNPs for ATAC-seq overlap analysis, HiChIP interaction tests, and 1400 

gkm-SVM model-based allelic effect scores 1401 

Our goal was to identify SNPs with a causal effect on any of the selected GWAS traits. To 1402 

minimize the chances of excluding causal GWAS SNPs, we selected the set of all variants 1403 

achieving a genome-wide significant p-value < 5e-8 for any GWAS trait. We then added in any 1404 

lead SNPs from the colocalization analysis that achieved CLPP score of > 0.01, even those that 1405 

did not pass the genome-wide significance value of p < 5e-8. We also included all trait-associated 1406 

SNPs curated from two other Parkinson's studies6,7. In these studies, full summary statistics were 1407 

not publicly available for the entire genome because meta-analysis was applied only to the subset 1408 

of SNPs reaching genome-wide significance in a previous Parkinson's GWAS. We then computed 1409 

the full set of SNPs that had LD R^2 ≥ 0.8 with at least one of the SNPs in the set selected above. 1410 

Together, these LD buddies plus the original set of trait-relevant SNPs comprised the set of SNPs 1411 

tested in our subsequent functional analyses. 1412 

 1413 

Testing GWAS loci for overlap with ATAC-seq peaks 1414 

We tested all SNPs in the above set for overlap with ATAC-seq peaks from two different 1415 

annotation formats. The first annotation consisted of bulk ATAC-seq peaks identified in one of 7 1416 

brain regions. The second annotation consisted of cluster-specific peaks from single-cell ATAC-1417 

seq data. For each variant selected for functional analysis, we determined all cellular contexts in 1418 

which an ATAC-seq peak contained this variant, as well as the nearest peak if no peak contained 1419 

the variant. 1420 

 1421 

Single-cell ATAC-seq library generation 1422 
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Cryopreserved nuclei were thawed on ice and 65,000 nuclei were transferred to a tube containing 1423 

1 ml of RSB-T [10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween]. Nuclei were 1424 

pelleted at 500 RCF for 5 minutes at 4°C in a fixed angle rotor. The supernatant was fully removed 1425 

using two pipetting steps (p1000 to remove down to the last 100 ul, then p200 to remove all 1426 

remaining supernatant). This pellet was then gently resuspended in 12 ul of 1x Nuclei Buffer (10x 1427 

Genomics). To transpose, 5 ul of this nuclei suspension (containing 27,000 nuclei) was transferred 1428 

to a tube containing 10 ul of transposition mix (10x Genomics). This reaction mixture was 1429 

incubated at 37°C for 1 hour to transpose. The remainder of library generation was completed as 1430 

described in the 10x Genomics Single Cell ATAC Regent Kits User Guide (v1 Chemistry). 1431 

 1432 

Single-cell ATAC-seq LSI clustering and visualization 1433 

To cluster our scATAC-seq data, we first identified a robust set of peak regions followed by 1434 

iterative LSI clustering12,18. Briefly, we created 1-kb windows tiled across the genome and 1435 

determined whether each cell was accessible within each window (binary). Next, we identified the 1436 

top 50,000 accessible windows across all samples (accounting for GC bias) and performed an LSI 1437 

dimensionality reduction (TF-IDF transformation followed by Singular Value Decomposition 1438 

SVD) on these windows followed by Harmony batch correction81. We then performed Seurat82 1439 

clustering (FindClusters v2.3) on the harmonized LSI dimensions at a resolution of 0.8, 0.4 and 1440 

0.2, keeping the clustering for which the minimum cluster size was greater than 100 cells (0.2 if 1441 

this condition is not met). For each cluster, we called peaks on the Tn5-corrected insertions (each 1442 

end of the Tn5-corrected fragments) using the MACS2 callpeak command with parameters ‘--shift 1443 

-75 --extsize 150 --nomodel --call-summits --nolambda --keep-dup all -q 0.05’. The peak summits 1444 

were then extended by 250 bp on either side to a final width of 501 bp, filtered by the ENCODE 1445 

hg38 blacklist (https://www.encodeproject.org/ annotations/ENCSR636HFF/), and filtered to 1446 

remove peaks that extend beyond the ends of chromosomes. We then created a non-overlapping 1447 

set of extended summits across all of these peaks as described previously12,18. 1448 

 We then counted the accessibility for each cell in these peak regions to create an 1449 

accessibility matrix. We then adopted the iterative LSI clustering approach12,18 to unbiasedly 1450 

identify clusters that are due to biological vs technical variation. Briefly, we computed the TF-IDF 1451 

transformation as described by Cusanovich et. al.83. To do this, we divided each index by the 1452 

colSums of the matrix to compute the cell “term frequency”. Next, we multiplied these values by 1453 

log(1 + ncol(matrix)/rowSums(matrix)), which represents the “inverse document frequency”. This 1454 

yields a TF-IDF matrix that can be used as input to irlba’s SVD implementation in R. We then 1455 

used Harmony to batch correct the LSI dimensions in R. Using the first 25 reduced dimensions as 1456 

input into a Seurat object, crude clusters were identified using Seurat’s (v2.3) SNN graph 1457 

clustering FindClusters function with a resolution of 0.2. We then calculated the cluster sums from 1458 

the binarized accessibility matrix and then log-normalized using edgeR’s ‘cpm(matrix, 1459 

log = TRUE, prior.count = 3)’ in R. Next, we identified the top 25,000 varying peaks across all 1460 

clusters using ‘rowVars’ in R. This was done on the cluster log-normalized matrix rather than the 1461 

sparse binary matrix because: (1) it reduced biases due to cluster cell sizes, and (2) it attenuated 1462 
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the mean-variability relationship by converting to log space with a scaled prior count. The 25,000 1463 

variable peaks were then used to subset the sparse binarized accessibility matrix and recompute 1464 

the TF-IDF transform. We used SVD on the TF-IDF matrix to generate a lower dimensional 1465 

representation of the data by retaining the first 25 dimensions. We then used Harmony to batch 1466 

correct the LSI dimensions in R. We then used these reduced dimensions as input into a Seurat 1467 

object and crude clusters were identified using Seurat’s (v.2.3) SNN graph clustering FindClusters 1468 

function with a resolution of 0.6. This process was repeated a third time with a resolution of 1.0. 1469 

Then, these same reduced dimensions were used as input to Seurat’s ‘RunUMAP’ with default 1470 

parameters and plotted in ggplot2 using R. 1471 

 1472 

Identification of clusters and cell types from scATAC-seq data 1473 

Different clusters and cell types were manually identified using promoter accessibility and gene 1474 

activity scores for various lineage-defining genes. Microglia (Cluster 24) were identified based on 1475 

accessibility near the IBA1, CD14, CD11C, PTGS1, and PTGS2 genes. Astrocytes (Clusters 13-1476 

17) were identified based on accessibility near the GFAP and FGFR3 genes. Excitatory neurons 1477 

(Clusters 1, 3, and 4 were identified based on accessibility near the SLC17A6 and SLC17A7 genes. 1478 

Inhibitory neurons (Cluster 2, 11, and 12) were identified based on accessibility near the GAD2 1479 

and SLC32A1 genes. Medium spiny neurons (most of Cluster 2) were identified based on 1480 

accessibility near the DARPP32 gene. Oligodendrocytes (Clusters 19-23) were identified based on 1481 

accessibility near the MAG and SOX10 genes. OPCs (Clusters 8-10) were identified based on 1482 

accessibility near the PDGFRA gene. All neuronal subsets, for example nigral neurons (Cluster 5-1483 

6), were identified primarily as neurons based on accessibility near the NEFL, RBFOX3, VGF, and 1484 

GRIN1 genes and then subdivided based on the region of origin and the accessibility near other 1485 

genes mentioned above. 1486 

 1487 

Single-cell ATAC-seq peak calling 1488 

For scATAC-seq peak calling from clusters or manually defined cell types, all single cells 1489 

belonging to the given group were pooled together. These pooled fragment files were converted to 1490 

the paired-end tagAlign format and processed with version 1.4.2 of the ENCODE DCC ATAC-1491 

seq pipeline. The conversion to tagAlign was performed as follows. For fragments on the positive 1492 

strand, the read start coordinate was the fragment start coordinate, zero-indexed. The read end 1493 

coordinate was the fragment start coordinate plus the read length (99 bp). For fragments on the 1494 

negative strand, the read start coordinate was the fragment end coordinate, zero-indexed. The read 1495 

start coordinate was the fragment end coordinate minus the read length (99 bp). Then, these 1496 

tagAlign files were used as input to the DCC ATAC-seq pipeline. IDR optimal peak sets with an 1497 

IDR threshold of 0.05 were determined for each cluster by the pipeline, using pseudo-bulk 1498 

replicate tagAligns for the cluster. Other pipeline parameters were the same as for bulk ATAC-seq 1499 

data (see above).  1500 

 1501 

Single-cell ATAC-seq gene activity scores 1502 
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We calculated gene activity scores by summing the binarized accessibility, weighted by distance, 1503 

in the 1-kb tiles within 100 kb. The distance weights were computed by determining the distance 1504 

from the tile to the gene promoter start site and computing “exp(-abs(distance)/10000)”. These 1505 

were then scaled to 10,000 and log-normalized with a pseudo count of 1. For visualization 1506 

purposes, the top and bottom 2.5% of scores were thresholded. 1507 

 1508 

Single-cell ATAC-seq pseudo-bulk replicate generation and differential accessibility 1509 

comparisons 1510 

For differential comparisons of clusters or cell types, including Pearson correlation determination, 1511 

non-overlapping pseudo-bulk replicates were generated from groups of cells. For each cell 1512 

grouping (i.e a cluster or a cell type), a minimum of 300 cells was required in order to make at 1513 

least two non-overlapping pseudo-bulk replicates of 150 cells each. A maximum of 3 pseudo-bulk 1514 

replicates was made per group if the total number of cells per group was greater than 450 cells. 1515 

Cells were randomly deposited into one of the pseudo-bulk replicates and all available cells were 1516 

used. In this way, the non-overlapping pseudo-bulk replicates are agnostic to which donor the cell 1517 

came from but aware of individual cells (i.e. all reads from a given cell are deposited into the same 1518 

pseudo-bulk replicate). These pseudo-bulk replicates were then used for differential comparisons 1519 

using DESeq284. 1520 

 1521 

CIBERSORT deconvolution 1522 

CIBERSORT25 was used to deconvolve bulk ATAC-seq data using signature matrices generated 1523 

from scATAC-seq data. Default parameters were used. For the cell type-specific classifier, pseudo-1524 

bulk replicates were generated for each of the 8 main cell types. For the cluster-specific classifier, 1525 

pseudo-bulk replicates were generated for each of the 24 clusters. 1526 

 1527 

Transcription factor footprinting 1528 

Transcription factor footprinting was performed as described previously64. 1529 

 1530 

HiChIP library generation 1531 

HiChIP library generation was performed as described previously13. One million cryopreserved 1532 

nuclei were used per experiment. Enzyme MboI was used for restriction digest. Sonication was 1533 

performed on a Covaris E220 instrument using the following settings: duty cycle 5, peak incident 1534 

power 140, cycles per burst 200, time 4 minutes. All HiChIP was performed using H3K27ac as 1535 

the target (Abcam ab4729). 1536 

 1537 

HiChIP data analysis 1538 

HiChIP paired-end sequencing data was processed using HiC-Pro85 version 2.11.0 with a 1539 

minimum mapping quality of 10. FitHiChIP86 was used to identify “peak-to-all” interactions using 1540 

peaks called from the one-dimensional HiChIP data. A lower distance threshold of 20 kb and an 1541 
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upper distance threshold of 2 Mb were used. Bias correction was performed using coverage-1542 

specific bias. 1543 

 1544 

HiChIP linkage of SNPs to genes 1545 

To link SNPs to genes, we identified FitHiChIP loops that contained a SNP in one anchor and a 1546 

TSS in the other anchor. This was performed for all LD-expanded SNPs to identify the full 1547 

complement of genes that could be putatively implicated in AD and PD. 1548 

 1549 

gkm-SVM machine learning classifier training and testing 1550 

For each of the 24 scATAC-seq clusters, we used a 10 fold cross-validation scheme to train 1551 

weighted gapped k-mer Support Vector Machine (gkm-SVM) models to classify 1000 bp 1552 

sequences into two classes - accessible (corresponding to sequences underlying peaks) and 1553 

inaccessible (GC matched inaccessible genomic regions). The test sets for each of the 10 folds are 1554 

as follows. Fold 0 consisted of chr 1. Fold 1 consisted of chr 2 and chr 19. Fold 2 consisted of chr 1555 

3 and chr 20. Fold 3 consisted of chr 6, chr 13, and chr 22. Fold 4 consisted of chr 5, chr 16, and 1556 

chr Y. Fold 5 consisted of chr 4, chr 15, and chr 21. Fold 6 consisted of chr 7, chr 14, and chr 18. 1557 

Fold 7 consisted of chr 11, chr 17, and chr X. Fold 8 consisted of chr 9 and chr 12. Fold 9 consisted 1558 

of chr 8 and chr 10. 1559 

For each of the 24 scATAC-seq clusters, we merged the IDR peaks with identical genomic 1560 

coordinates (peaks with multiple summits) while preserving the summit position and the MACS2 1561 

p-value of the peak with the lowest p-value among the ones with the identical coordinates. Next, 1562 

we ranked the peaks by the MACS2 p-value, expanded each peak by 500 bp on either side of the 1563 

summit, to a total of 1000 bp, and eliminated those peaks with any ‘N’ bases in the 1000 bp. For 1564 

each of 10 cross-validation folds, we kept up to 60,000 of the top peaks belonging to the training 1565 

set and all of the peaks belonging to the much smaller test set, all of which comprised the positively 1566 

labeled (accessible) examples for training. 1567 

In order to generate the negative (inaccessible) examples for each of the cross-validation 1568 

folds in each single-cell cluster, first, we used seqdataloader 1569 

(https://github.com/kundajelab/seqdataloader) to generate all 1000 bp sequences obtained by tiling 1570 

the hg38 genome 200 bp at a time, with a stride of 50 bp, keeping those 200 bp segments that have 1571 

no IDR peak summits in that cluster, and then expanding those 200 bp segments by 400 bp on each 1572 

side for a total of 1000 bp. Next, we calculated the GC content of the selected positive examples 1573 

and all of the negative sequences. We matched each of the positive examples, both in the training 1574 

set and the test set, with a negative sequence with the closest GC content, without replacement. 1575 

For each of the 10 folds in each of the 24 clusters, we used the 1000-bp DNA sequences 1576 

corresponding to the positive and GC-matched negative training examples as inputs to the 1577 

gkmtrain function from the LS-GKM package87 with the default options, producing a total of 240 1578 

models; the default options for LS-GKM included the gapped k-mer + center weighted (wgkm) 1579 

kernel (t = 4), a word length of 11 (l = 11), 7 informative columns (k = 7), 3 maximum mismatches 1580 

to consider (d = 3), an initial value of the exponential decay function of 50 (M = 50), a half-life 1581 
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parameter of 50 (H = 50), a regularization parameter of 1.0 (c = 1.0), and a precision parameter of 1582 

0.001 (e = 0.001). We used the resulting support vectors for each trained model to score the DNA 1583 

sequences corresponding to the positive and GC-matched negative test set examples for each fold 1584 

in each cluster by running gkmpredict, and used the scikit-learn python library88 to calculate both 1585 

auROC and auPRC accuracy metrics. 1586 

 1587 

gkm-SVM allelic scores of candidate SNPs 1588 

We intersected the coordinates of all LD-expanded candidate AD and PD GWAS and 1589 

colocalization SNPs with those of the peaks for each single-cell ATAC-seq cluster to obtain the 1590 

SNPs in each cluster that are in peaks. For each SNP in a peak in each of the clusters, we retrieved 1591 

the 1000 bp DNA sequence around the SNP, with the SNP at its center, and created a sequence 1592 

corresponding to the effect allele by replacing the 500th position of the sequence with the effect 1593 

allele. Similarly, we created another sequence corresponding to the non-effect allele by replacing 1594 

the 500th position of the sequence with the non-effect allele. Furthermore, we repeated the same 1595 

procedure to also produce 50 bp sequences for each SNP with the effect allele and the non-effect 1596 

allele by retrieving the 50 bp DNA sequence around each SNP and replacing the 25th position 1597 

with the effect and the non-effect allele, respectively. 1598 

 For each SNP in a peak in each of the clusters, we computed GkmExplain37 importance 1599 

scores for each position in each of the 1000 bp effect and non-effect allele sequences using each 1600 

of the 10 gkm-SVM36 models for the respective cluster. GkmExplain is a method to infer the 1601 

importance or predictive contribution of every base in an input sequence to its corresponding 1602 

output prediction from a gkm-SVM model. Next, for each SNP in a given cluster, we computed 1603 

the average score for each position across all 10 models (from the 10 folds) for that cluster for both 1604 

the effect allele sequence and the non-effect allele sequence, producing a set of consensus 1605 

importance scores for both the effect allele and the non-effect allele. Then, we subtracted the sum 1606 

of these consensus importance scores corresponding to the central 50 bp of the non-effect allele 1607 

sequence from that of the effect allele sequence to compute the GkmExplain score for each SNP 1608 

in each cluster. 1609 

To compute in silico mutagenesis (ISM) scores for each SNP in a peak in each of the 1610 

clusters, we used each of the 10 fold gkm-SVM models from the respective cluster to compute 1611 

model output prediction scores for the 50 bp effect and non-effect allele sequences by running 1612 

gkmpredict. Then, we subtracted the score of the non-effect allele sequence from that of the effect 1613 

allele sequence to obtain the ISM score and computed the average ISM score for each SNP across 1614 

all 10 folds in each cluster. 1615 

To compute deltaSVM scores, we generated all possible non-redundant k-mers of size 11 1616 

and scored each of them using each of the 240 models. Next, for each SNP in a peak in each of the 1617 

clusters, we used each of the 10 sets of k-mer scores from the gkm-SVM models from the 1618 

respective cluster to run deltaSVM39 on the 50 bp effect and non-effect allele sequences. We 1619 

computed the average of the resulting deltaSVM scores for each SNP across all 10 folds in each 1620 

cluster. 1621 
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 1622 

Statistical significance and high confidence sets of gkm-SVM based allelic scores for 1623 

candidate SNPs 1624 

In order to obtain a statistical significance for each of the three gkm-SVM model based allelic SNP 1625 

scores (GkmExplain, ISM and deltaSVM), we computed an empirical null distribution of scores. 1626 

We expect most of the LD expanded candidate SNPs to be non functional. Hence, we simply use 1627 

the distribution of the scores for all candidate SNPs as an empirical null distribution. For each type 1628 

of score, in order to control for any arbitrary bias in the sign of the score, we included the negative 1629 

value of each score to the list of scores to enforce symmetry. We found that the t-distribution was 1630 

a good fit (based on KS test) to the empirical null distribution for all three scores. Hence, we used 1631 

the fitted t-distributions (using SciPy python library http://www.scipy.org/) to each of the three 1632 

sets of scores as the null distributions. 1633 

 To select SNPs with statistically significant gkm-SVM allelic scores, for each cluster, 1634 

we selected those SNPs that fall outside the 95% confidence interval for all three null t-1635 

distributions fitted to the GkmExplain, ISM, and deltaSVM scores. 1636 

 Next, we developed a method to identify putative transcription factor binding sites around 1637 

each gkm-SVM scored statistically significant candidate SNP, by identifying the subsequences 1638 

around the SNP whose base-resolution importance scores are significantly above background. For 1639 

each SNP, we defined the active allele as the allele for which the 50 bp sequence centered on the 1640 

SNP has the higher gkmpredict output score (relative to the other allele) from the gkm-SVM 1641 

model. We fitted a background null t-distribution to the consensus GkmExplain importance scores 1642 

(averaged across models for all 10 folds) of all bases in the 200 bp sequence centered on the SNP 1643 

and containing the active allele. We use this null distribution to identify bases around the SNP with 1644 

high signal-to-noise ratio. Specifically, starting from the center of the positive allele’s sequence, 1645 

which is the location of the SNP, we continue advancing one pointer upstream and another 1646 

downstream, each up to the position beyond which lie two consecutive bases that both have 1647 

consensus importance scores that are within or lower than the 90% confidence interval for the 1648 

distribution fitted to the consensus importance scores for that sequence. The subsequence between 1649 

the terminal positions of the two pointers corresponds to one that underlies a series of bases with 1650 

high GkmExplain importance scores that are significantly above scores of surrounding background 1651 

seqeunce and potentially contains transcription factor binding sites and motifs that are relevant for 1652 

the given cluster. We refer to these high-importance subsequences seqlets. 1653 

Next, we defined two additional scores (prominence score and magnitude score) to further 1654 

identify high confidence candidates from the gkm-SVM scored statistically significant candidate 1655 

SNPs supported by seqlets that could potentially match identifiable transcription factor binding 1656 

sites. We compute the sum of the non-negative consensus importance scores from the active 1657 

allele’s seqlet, which we refer to as the active seqlet score, and divide that score by the sum of the 1658 

non-negative consensus importance scores from the entire central 200-bp region of the active 1659 

allele’s sequence; we refer to this ratio as the active seqlet signal-to-noise ratio. Similarly, we 1660 

compute the inactive seqlet score as the sum of the non-negative consensus importance scores in 1661 
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the inactive allele’s sequence from the same positions overlapping the active seqlet. We obtain a 1662 

corresponding inactive seqlet signal-to-noise ratio by dividing the inactive seqlet score by the 1663 

sum of the non-negative consensus importance scores from the entire central 200-bp region of the 1664 

inactive allele’s sequence. Then, for each SNP, we compute the prominence score by subtracting 1665 

the non-effect allele’s seqlet signal-to-noise ratio from the effect allele’s seqlet signal-to-noise 1666 

ratio. In addition, we also compute a magnitude score by subtracting the non-effect allele’s seqlet 1667 

score from the effect allele’s seqlet score.  1668 

To compute the statistical significance of the prominence and magnitude scores for 1669 

candidate SNPs, for each cluster, we fit null t-distributions to the prominence scores and magnitude 1670 

scores (using a KS test to test goodness of fit of the t-distribution to the empirical distribution of 1671 

scores). For each type of score, in order to control for any arbitrary bias in the sign of the score, 1672 

we include the negative value of each score to the list of scores to enforce symmetry before fitting 1673 

the distribution. 1674 

 Finally, to prioritize SNPs that disrupt potential transcription factor binding sites, in each 1675 

cluster, among the SNPs with statistically significant gkm-SVM allelic scores, we designate as 1676 

high confidence SNPs those that have prominence scores outside the 95% confidence interval for 1677 

the distribution fitted to the prominence scores. These are the SNPs that have an allele that 1678 

completely destroys a prominent and high-scoring seqlet and, as a result, potentially disrupts an 1679 

important transcription factor binding site. Next, among the confident SNPs that do not pass the 1680 

high confidence threshold, we designated as medium confidence SNPs those that have either peak 1681 

magnitude scores outside the 95% confidence interval or prominence scores outside the 80% 1682 

confidence interval. The magnitude threshold is intended to capture those SNPs that have a 1683 

significant deleterious effect on the seqlet score, even if those SNPs do not necessarily destroy the 1684 

entire seqlet and even for cases where the seqlet around the SNP is not among the most prominent 1685 

seqlets in the local 200 bp sequence window. In addition, the relaxed prominence threshold is 1686 

intended to capture those SNPs that do not pass the stringent filter for the high confidence set, but 1687 

nevertheless, demonstrate at least a partial deleterious effect on a moderately scoring seqlet around 1688 

the SNP. Together, these two filters serve to increase the recall in the prioritization of the SNPs, 1689 

allowing us to identify all promising SNPs that are worthy of in-depth evaluation, which can assess 1690 

their potential regulatory effect through a case-by-case analysis. The remaining SNPs in the 1691 

confident set, which fail to meet the threshold set for medium confidence, are designated as low 1692 

confidence SNPs, as they include SNPs that significantly reduce the GkmExplain score, the ISM 1693 

score, and the deltaSVM score, but do not have a clear impact on a seqlet around the SNP, making 1694 

it unlikely for them to have a disruptive effect on a key transcription factor binding site. 1695 

 1696 

Identification of MAPT haplotypes 1697 

The MAPT haplotype block is part of one of the largest LD blocks in the human genome. To 1698 

identify SNPs that belong exclusively to either the H1 or H2 haplotype, we used minor allele 1699 

frequencies from dbSNP version 151. SNPs were required to be within the coordinates of the 1700 

MAPT inversion breakpoints (hg38 chr17:45551578-46494237) and to have a minor allele 1701 
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frequency between 8.4% and 9%. While there are undoubtedly haplotype specific SNPs outside 1702 

this frequency range, we chose this range to be as conservative as possible and to pick SNPs that 1703 

showed minimal haplotype switching. Each SNP was verified to track with the predicted haplotype 1704 

using LDLink89. This resulted in 2366 SNPs that could be confidently called as haplotype 1705 

divergent.  1706 

 1707 

MAPT locus differential expression analysis 1708 

A 900-kb block of variants in strong LD at the MAPT locus hampered the resolution of 1709 

colocalization methods for identifying causal variants and/or genes at this locus. To probe this 1710 

locus more deeply, we assembled a list of 2366 variants uniquely found in either the H1 or the H2 1711 

haplotype of the MAPT locus (described above). For each of the 838 individuals genotyped in 1712 

GTEx v8, we counted the number of variants in support of either haplotype. We designated 1713 

individuals as homozygous if they possessed less than 1% of variants favoring the opposite 1714 

haplotype and heterozygous if 45% to 55% of variants supported either haplotype. This determined 1715 

the individual's haplotype in all but six cases, which were excluded from the remainder of the 1716 

MAPT analysis. In total, we identified 539 individuals with the H1/H1 haplotype, 260 with H2/H1, 1717 

and 33 with H2/H2. Our a priori gene of interest was MAPT, which whose expression had 1718 

previously been demonstrated to be higher in H1 than H2 haplotypes. At a nominal cutoff of p < 1719 

0.05, we confirmed this expected direction of differential MAPT expression (higher in H1 1720 

haplotypes) in multiple tissues, with the strongest contrasts in “Brain - Cortex”. 1721 

We then extended our analysis to include all genes expressed in any of the brain tissues 1722 

from GTEx v8. We compared the log2-fold change of gene expression (TPM) between H1/H1 and 1723 

H1/H2 individuals, given that these subgroups had the largest sample size. A change was 1724 

considered statistically significant if a Wilcoxon rank-sum test between the two groups produced 1725 

a p-value of < 0.05 / (total # genes) / (total # tissues). We also performed pairwise Wilcoxon rank-1726 

sum test comparisons for each gene in each brain tissue between all 3 pairings of haplotypes. 1727 

 1728 

MAPT haplotype-specific ATAC-seq and HiChIP analysis 1729 

For both ATAC-seq and HiChIP, reads from heterozygote donors were re-mapped to an N-masked 1730 

genome (using bowtie2 or HiCPro, respectively) where all dbSNP v151 positions were masked to 1731 

“N”. After alignment, SNPsplit90 was used to divide reads mapping to either the H1 or H2 1732 

haplotypes based on the presence of one of the 2366 haplotype-divergent SNPs identified above. 1733 

In this way, reads mapping to regions that lack a haplotype-divergent SNP could not be assigned 1734 

in an allelic fashion to either the H1 or H2 haplotypes and were ignored. For track-based 1735 

visualizations of haplotype-specific data, all available data from a given haplotype was merged 1736 

agnostic to what brain region the data was derived from. To identify regions with haplotype-1737 

specific chromatin accessibility in the MAPT locus, the entire locus was tiled into non-overlapping 1738 

500 bp bins and the number of Tn5 transposase insertions were counted for each haplotype in each 1739 

bin for each sample. A Wilcoxon signed-rank test was used to determine if the difference between 1740 

H1 and H2 for each bin was significant after multiple hypothesis correction (FDR < 0.01). 1741 
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